Over the last two years, wavelet methods have shown themselves to be of considerable use to harmonic analysts and, in particular, advances have been made concerning their applications. The strength of wavelet methods lies in their ability to describe local phenomena more accurately than a traditional expansion in sines and cosines can. Thus, wavelets are ideal in many fields where an approach to transient behaviour is needed, for example, in considering acoustic or seismic signals, or in image processing. Yves Meyer stands the theory of wavelets firmly upon solid ground by basing his book on the fundamental work of Calderón, Zygmund and their collaborators. For anyone who would like an introduction to wavelets, this book will prove to be a necessary purchase.
‘I recommend this book to every mathematically minded reader … it is beautifully written and the English translation is excellent.’
Source: Science
‘… an excellent introduction to wavelets by a leading researcher in this field. This lucid account of the theory behind wavelets is aimed at the postgraduate level.’
Source: Short Book Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.