We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adopting a unified mathematical framework, this textbook gives a comprehensive derivation of the rules of continuum physics, describing how the macroscopic response of matter emerges from the underlying discrete molecular dynamics. Covered topics include elasticity and elastodynamics, electromagnetics, fluid dynamics, diffusive transport in fluids, capillary physics and thermodynamics. By also presenting mathematical methods for solving boundary-value problems across this breadth of topics, readers develop understanding and intuition that can be applied to many important real-world problems within the physical sciences and engineering. A wide range of guided exercises are included, with accompanying answers, allowing readers to develop confidence in using the tools they have learned. This book requires an understanding of linear algebra and vector calculus and will be a valuable resource for undergraduate and graduate students in physics, chemistry, engineering and geoscience.
This advanced undergraduate textbook provides a thoroughly modern overview of plate tectonics and is the perfect resource for a capstone geology course. It presents plate tectonics as a multifaceted, interdisciplinary theory that unites many different geological observations and processes into a harmonious model so that readers grasp how the outer part of our planet works in relation to the deep interior. Supported by clear prose, helpful analogies, and stunning colour imagery, readers will gain an in-depth understanding of how and why plates interact to produce different topography, rock assemblages and deformation features along plate boundaries. Written by an author pairing renowned for their research, teaching, and textbook writing experience, this text covers necessary ground for a single-semester course without overwhelming readers and offers a truly accessible introduction to quantitative topics. Student-friendly features chart clear paths through every chapter and a rich suite of online resources bring plate tectonics to life.
Many of the world's continents are bounded or traversed by vast fault networks that move laterally, like the well-known San Andreas Fault. As well as being major tectonic features of the Earth's surface, these strike-slip regimes are vitally important to the world's natural resources – petroleum, water, and geothermal energy. This book covers all aspects of these regimes; how they initiate; how they develop; and the natural resources associated with them. Numerous global case studies illustrate structural development, thermal and fluid flow implications, and commercial applicability. No other book provides such a comprehensive overview of these settings, and this volume will stand as a critical reference of the state of knowledge of strike-slip terrains and transform margins. It will be invaluable for a broad range of readers, from advanced students of geology and researchers specializing in strike-slip regimes to geoscientists and managers involved in natural resources and energy solutions.
Glacially triggered faulting describes movement of pre-existing faults caused by a combination of tectonic and glacially induced isostatic stresses. The most impressive fault-scarps are found in northern Europe, assumed to be reactivated at the end of the deglaciation. This view has been challenged as new faults have been discovered globally with advanced techniques such as LiDAR, and fault activity dating has shown several phases of reactivation thousands of years after deglaciation ended. This book summarizes the current state-of-the-art research in glacially triggered faulting, discussing the theoretical aspects that explain the presence of glacially induced structures and reviews the geological, geophysical, geodetic and geomorphological investigation methods. Written by a team of international experts, it provides the first global overview of confirmed and proposed glacially induced faults, and provides an outline for modelling these stresses and features. It is a go-to reference for geoscientists and engineers interested in ice sheet-solid Earth interaction.
David Sandwell developed this advanced textbook over a period of nearly 30 years for his graduate course at Scripps Institution of Oceanography. The book augments the classic textbook Geodynamics by Don Turcotte and Jerry Schubert, presenting more complex and foundational mathematical methods and approaches to geodynamics. The main new tool developed in the book is the multi-dimensional Fourier transform for solving linear partial differential equations. The book comprises nineteen chapters, including: the latest global data sets; quantitative plate tectonics; plate driving forces associated with lithospheric heat transfer and subduction; the physics of the earthquake cycle; postglacial rebound; and six chapters on gravity field development and interpretation. Each chapter has a set of student exercises that make use of the higher-level mathematical and numerical methods developed in the book. Solutions to the exercises are available online for course instructors, on request.
This market-leading textbook has been fully updated in response to extensive user feedback. It includes a new chapter on joints and veins, additional examples from around the world, stunning new field photos, and extended online resources with new animations and exercises. The book's practical emphasis, hugely popular in the first edition, features applications in the upper crust, including petroleum and groundwater geology, highlighting the importance of structural geology in exploration and exploitation of petroleum and water resources. Carefully designed full-colour illustrations work closely with the text to support student learning, and are supplemented with high-quality photos from around the world. Examples and parallels drawn from practical everyday situations engage students, and end-of chapter review questions help them to check their understanding. Updated e-learning modules are available online (www.cambridge.org/fossen2e) and further reinforce key topics using summaries, innovative animations to bring concepts to life, and additional examples and figures.
This second edition is fully updated to include new developments in the study of metamorphism as well as enhanced features to facilitate course teaching. It integrates a systematic account of the mineralogical changes accompanying metamorphism of the major rock types with discussion of the conditions and settings in which they formed. The use of textures to understand metamorphic history and links to rock deformation are also explored. Specific chapters are devoted to rates and timescales of metamorphism and to the tectonic settings in which metamorphic belts develop. These provide a strong connection to other parts of the geology curriculum. Key thermodynamic and chemical concepts are introduced through examples which demonstrate their application and relevance. Richly illustrated in colour and featuring end-of-chapter and online exercises, this textbook is a comprehensive introduction to metamorphic rocks and processes for undergraduate students of petrology, and provides a solid basis for advanced study and research.
Tackling structural geology problems today requires a quantitative understanding of the underlying physical principles, and the ability to apply mathematical models to deformation processes within the Earth. Accessible yet rigorous, this unique textbook demonstrates how to approach structural geology quantitatively using calculus and mechanics, and prepares students to interface with professional geophysicists and engineers who appreciate and utilize the same tools and computational methods to solve multidisciplinary problems. Clearly explained methods are used throughout the book to quantify field data, set up mathematical models for the formation of structures, and compare model results to field observations. An extensive online package of coordinated laboratory exercises enables students to consolidate their learning and put it into practice by analyzing structural data and building insightful models. Designed for single-semester undergraduate courses, this pioneering text prepares students for graduates studies and careers as professional geoscientists.
A volcanic eruption occurs when a magma-filled fracture propagates from its source to the surface. Analysing and understanding the conditions that allow this to happen constitute a major part of the scientific field of volcanotectonics. This new volume introduces this cutting-edge and interdisciplinary topic in volcanological research, which incorporates principles and methods from structural geology, tectonics, volcano-deformation studies, physical volcanology, seismology, and physics. It explains and illustrates the physical processes that operate inside volcanoes and which control the frequencies, locations, durations, and sizes of volcanic eruptions. Featuring a clear theoretical framework and helpful summary descriptions of various volcanic structures and products, as well as many worked examples and exercises, this book is an ideal resource for students, researchers and practitioners seeking an understanding of the processes that give rise to volcanic deformation, earthquakes, and eruptions.
This lively introduction to geologic fracture mechanics provides a consistent treatment of all common geologic structural discontinuities. It explores the formation, growth and interpretation of fractures and deformation bands, from theoretical, field and lab-based perspectives, bridging the gap between a general textbook treatment and the more advanced research literature. It allows the reader to acquire basic tools to interpret discontinuity origins, geometries, patterns and implications using many of the leading and contemporary concepts known to specialists in the field. Problem sets are provided at the end of each chapter, and worked examples are included within each chapter to illustrate topics and enable self-study. With all common geologic structures including joints, hydrofractures, faults, stylolites and deformation bands being discussed from a fresh perspective, it will be a useful reference for advanced students, researchers and industry practitioners interested in structural geology, neotectonics, rock mechanics, planetary geology, and reservoir geomechanics.
This hands-on introduction to numerical geodynamic modelling provides a solid grounding in the necessary mathematical theory and techniques, including continuum mechanics and partial differential equations, before introducing key numerical modelling methods and applications. Fully updated, this second edition includes four completely new chapters covering the most recent advances in modelling inertial processes, seismic cycles and fluid-solid interactions, and the development of adaptive mesh refinement algorithms. Many well-documented, state-of-the-art visco-elasto-plastic 2D models are presented, which allow robust modelling of key geodynamic processes. Requiring only minimal prerequisite mathematical training, and featuring over sixty practical exercises and ninety MATLAB® examples, this user-friendly resource encourages experimentation with geodynamic models. It is an ideal introduction for advanced courses and can be used as a self-study aid for graduates seeking to master geodynamic modelling for their own research projects.
This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.
A clear understanding of the processes responsible for observed rock microstructures is essential for making reliable petrogenetic interpretations, including inferences made from chemical and isotopic analyses of minerals. This volume presents a comprehensive survey of rock microstructures, emphasising basic concepts and the latest methods, while highlighting potential pitfalls in the interpretation of the origin of rock microstructure. Richly illustrated with over 250 colour photographs, including more than 10 percent new photomicrographs and several mesoscopic images, it demonstrates the basic processes responsible for the wide variety of microstructures in igneous, metamorphic and sedimentary rocks. This second edition includes extensive updates to the coverage of igneous rocks as well as recent ideas on physical processes in migmatites and partial melting of sedimentary rocks. This practical guide will continue to be an invaluable resource to advanced students and early-career researchers of mineralogy, petrology and structural geology, as well as professional geologists and material scientists.
Geodynamics is the study of the deformation and flow of the solid Earth and other planetary interiors. Focusing on the Earth's mantle, this book provides a comprehensive, mathematically advanced treatment of the continuum mechanics of mantle processes and the craft of formulating geodynamical models to approximate them. Topics covered include slow viscous flow, elasticity and viscoelasticity, boundary-layer theory, long-wave theories including lubrication theory and shell theory, two-phase flow, and hydrodynamic stability and thermal convection. A unifying theme is the utility of powerful general methods (dimensional analysis, scaling analysis, and asymptotic analysis) that can be applied in many specific contexts. Featuring abundant exercises with worked solutions for graduate students and researchers, this book will make a useful resource for Earth scientists and applied mathematicians with an interest in mantle dynamics and geodynamics more broadly.
The second edition of Principles of Seismology has been extensively revised and updated to present a modern approach to observation seismology and the theory behind digital seismograms. It includes: a new chapter on Earthquakes, Earth's structure and dynamics; a considerably revised chapter on instrumentation, with new material on processing of modern digital seismograms and a list of website hosting data and seismological software; and 100 end-of-chapter problems. The fundamental physical concepts on which seismic theory is based are explained in full detail with step-by-step development of the mathematical derivations, demonstrating the relationship between motions recorded in digital seismograms and the mechanics of deformable bodies. With chapter introductions and summaries, numerous examples, newly drafted illustrations and new color figures, and an updated bibliography and reference list, this intermediate-level textbook is designed to help students develop the skills to tackle real research problems.
Essential reading for any Earth scientist, this classic textbook has been providing advanced undergraduate and graduate students with the fundamentals needed to develop a quantitative understanding of the physical processes of the solid earth for over thirty years. This third edition has two completely new chapters covering numerical modelling and geophysical MATLAB® applications, and the text is now supported by a suite of online MATLAB® codes that will enable students to grasp the practical aspects of computational modelling. The book has been brought fully up to date with the inclusion of new material on planetary geophysics and other cutting edge topics. Exercises within the text allow students to put the theory into practice as they progress through each chapter and carefully selected further reading sections guide and encourage them to delve deeper into topics of interest. Answers to problems available within the book and also online, for self-testing, complete the textbook package.
Two billion years of Earth history are represented in the rocks and landscape of the Southwest USA, creating natural wonders such as the Grand Canyon, Monument Valley, and Death Valley. This region is considered a geologist's 'dream', since its rocks provide a slice through a huge range of Earth history, and provide examples of many of the geologic processes shaping the Earth. For this reason, the region attracts a large number of undergraduate field classes, and amateur geologists. Geology of the American Southwest, first published in 2004, provides a concise and accessible account of the geology of the region, and will prove invaluable to students studying here. It will also appeal to anyone interested in geology and landscape, and is a valuable guide for visitors to the National Parks of the region.
Salt tectonics is the study of how and why salt structures evolve and the three-dimensional forms that result. A fascinating branch of geology in itself, salt tectonics is also vitally important to the petroleum industry. Covering the entire scale from the microscopic to the continental, this textbook is an unrivalled consolidation of all topics related to salt tectonics: evaporite deposition and flow, salt structures, salt systems, and practical applications. Coverage of the principles of salt tectonics is supported by more than 600 color illustrations, including 200 seismic images captured by state-of-the-art geophysical techniques and tectonic models from the Applied Geodynamics Laboratory at the University of Texas, Austin. These combine to provide a cohesive and wide-ranging insight into this extremely visual subject. This is the definitive practical handbook for professional geologists and geophysicists in the petroleum industry, an invaluable textbook for graduate students, and a reference textbook for researchers in various geoscience fields.
Using full-colour palaeogeographical maps from the Cambrian to the present, this interdisciplinary volume explains how plate motions and surface volcanism are linked to processes in the Earth's mantle, and to climate change and the evolution of the Earth's biota. These new and very detailed maps provide a complete and integrated Phanerozoic story of palaeogeography. They illustrate the development of all the major mountain-building orogenies. Old lands, seas, ice caps, volcanic regions, reefs, and coal beds are highlighted on the maps, as well as faunal and floral provinces. Many other original diagrams show sections from the Earth's core, through the mantle, and up to the lithosphere, and how Large Igneous Provinces are generated, helping to understand how plates have appeared, moved, and vanished through time. Supplementary resources are available online, making this an invaluable reference for researchers, graduate students, professional geoscientists and anyone interested in the geological history of the Earth.
Rifts and passive margins are extremely important for the petroleum industry, as they are areas of high sedimentation and can contain significant oil and gas resources. This book provides a comprehensive understanding of rifts and passive margins as a whole. It synthesises in one volume the existing information devoted to specific aspects of these vitally important hydrocarbon habitats. This collection of state-of-the-art information on the topic facilitates the better use of this knowledge to assess the risks of exploring and operating in these settings and the development of systematic and predictive hydrocarbon screening tools. The book will be invaluable for a broad range of readers, from advanced geology students and researchers to exploration geoscientists to exploration managers exploring for and developing hydrocarbon resources in analogous settings.