We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter briefly surveys the history of research into human settlement in the Caucasus region and outlines the book’s theses. In doing so, it acknowledges the long-standing interest in the unique languages and topography of the Caucasus region. It also surveys Caucasus research before and after the fall of the Soviet Union. It further charts the impact of anthropological genetics on our understanding of human evolutionary history; and introduces the unanswered questions about Caucasus population history.
For a book that attempts to explain how to understand visuals in life sciences, it seems prudent to first explain what we mean by “visual,” even if it may seem quite a common word.
In everyday conversation, “visual” is often used as an adjective and means “relating to seeing or sight,” as in “visual impression” or “visual effect.” In the context of this book, “visual” is used similarly as an adjective, but in addition, and more often, it is used as a noun. As a noun, it refers to the variety of images used in life science communication. For example, photographs are a type of visual commonly used in life science communication, and so are drawings.
The theory of evolution, as espoused by Charles Darwin in The Origin of Species in 1859, was difficult to accept for religious believers whose assumptions about the world were shattered by it, but Darwin’s The Descent of Man, published 12 years later, posed even greater challenges to people who did accept it, and those challenges continue today. It has often been noted that a disorienting consequence of the Enlightenment was to force people to recognize that humans were not created at the center of the universe in the image of God, but instead on a remote dust-speck of a planet, in the image of mold, rats, dogs, and chimps. For the entirety of recorded history, moral beliefs about humans had been based on the idea that people were in some fundamental sense apart from the rest of nature. Darwin disabused us of that notion once and for all. The scientific and social upheaval that has occurred since Darwin has been an extended process of coming to terms with a unification of humans and the rest of the natural world.
This opening chapter provides an overview of the future societal and subsequenl scientific challenges associated with population ageing. More specifically, it emphasizes how the field of biodemography constitutes a relevant framework for future research programmes aiming to address questions of paramount importance regarding both the causes (e.g. evolutionary, mechanistics) and consequences (demographic, medical) of the ageing process. Finally, this chapter details the book contents.
Who does not know the most basic fact from the science of genetics, that peas and people reproduce in a similar fashion?
It is taught in high schools. Gregor Mendel discovered the fundamental scientific way that organisms breed, and it works the same way in people as it does in peas. Everyone knows that. They may not remember the specifics, with dominant uppercase A and recessive lowercase a – but they know that humans and peas reproduce basically the same way, because they were taught it, and it’s true.
Now I am certainly not going to try and convince you otherwise. But have you ever actually seen peas reproduce? Thanks to the internet, you can readily see videos of plant breeding. The videos of humans breeding, of course, are posted on more restricted internet sites.
Edited by
Jeremy Koster, Max Planck Institute for Evolutionary Anthropology, Leipzig,Brooke Scelza, University of California, Los Angeles,Mary K. Shenk, Pennsylvania State University
Among the diversity of perspectives for studying the nexus of evolution and human behavior, human behavioral ecology (HBE) emerged as the study of the adaptive nature of behavior as a function of socioecological context. This volume explores the history and diversification of HBE, a field which has grown considerably in the decades since its emergence in the 1970s. At its core, the principles of HBE have remained a clear and cogent way to derive predictions about the adaptive function of behavior, even as the questions and methods of the discipline have evolved to be more interdisciplinary and more synergistic with other fields in the evolutionary social sciences. This introductory chapter covers core concepts, including methodological individualism, conditional strategies, and optimization. The chapter then provides an overview of the state of the field, including a summary of current research topics, areas, and methods. The chapter concludes by emphasizing the integral role that human behavioral ecology continues to play in deepening scholarly understandings of human behavior.
Transmutation. “Evolutio,” if you wanted to be fancy and Italian about it. Whatever you want to call it, the grand unrolling of one type into another, connecting all living things into a single tree of life was all the rage among the society gentlemen. James Burnett, Lord Monboddo, an influential Scottish judge in the 1700s, had said shocking things about it. Monboddo’s metaphysics separated humans from brutes by only the thinnest slice of cognition. And imagine how he scandalized the chattering classes when, according to rumor anyway, he suggested perhaps tails even lingered, dangling from the spinal cords of the underdeveloped. They called him an “eccentric,” a fusty, argumentative judge and a voracious reader. Perhaps too learned – genius and madness, you know.
Ever since living beings arose from non-living organic compounds on a primordial planet, more than 3.5 billion years ago, a multitude of organisms has unceasingly flourished by means of the reproduction of pre-existing organisms. Through reproduction, living beings generate other material systems that to some extent are of the same kind as themselves. The succession of generations through reproduction is an essential element of the continuity of life. Not surprisingly, the ability to reproduce is acknowledged as one of the most important properties to characterize living systems. But let’s step back and put reproduction in a wider context, the endurance of material systems.
The view of living systems as machines is based on the idea of a fixed sequence of cause and effect: from genotype to phenotype, from genes to proteins and to life functions. This idea became the Central Dogma: the genotype maps to the phenotype in a one-way causative fashion, making us prisoners of our genes.
“Just the facts, ma’am. Just the facts!” This famous directive by Sergeant Joe Friday – apparently never actually made in this form – is from the television series Dragnet. Unfortunately, while this may be adequate for detecting and solving crime, not so elsewhere. The idea that science is simply a matter of recording empirical experience is hopelessly inadequate and misleading. Science is about empirical experience, but it is about such experience as encountered and interpreted – and with effort and good fortune – as explained by us.
This chapter examines the nature of the research conducted in and on zoos. Much of the research undertaken in zoos is concerned with the behaviour, nutrition, welfare and reproduction of animals. However, work has also been published on the history of zoos, their place in culture, their conservation role, their educational value and the interactions between people and animals in zoos. Historical trends in zoo research are examined along with taxonomic bias in the species studied: most studies involve mammals. Although zoo research is published in a wide range of journals, in recent decades a number of specialist journals have been produced.
There are several ‘enigmatic canid’ species in North America. One of them is the red wolf (Canis rufus, Figure 1.1), and another is the Great Lakes Wolf. Red wolves are seriously endangered, with a re-released population in North Carolina and breeding programmes being the last populations. Red wolves weren’t even studied closely until the 1960s, after having been hunted nearly to extinction in the nineteenth and twentieth centuries.
In February 2010, I was crouching down in a subterranean tomb chamber at the archaeological site of Amara West in modern Sudan, excavating the human skeletal remains of people that had lived some 3000 years ago. Suddenly, I came across fragile tubular objects made of a whitish substance arranged almost like a string of beads parallel to the femur of a middle-aged woman (Figure 1.1). The unassuming little tubes were carefully collected, wrapped in scraps of acid-free tissue paper, packed in cardboard boxes used for Sudanese matches and labelled ‘calcified arteries?’. Together with the excavated skeletal remains, they were later – courtesy of the National Corporation for Antiquities and Museums of Sudan – shipped to the British Museum in London for further scientific analysis within the framework of my PhD research at Durham University under the supervision of Charlotte A. Roberts, the co-editor with myself of this book.
In this book we explore how different kinds of parasites affected the key civilizations that flourished across the world over the last 10,000 years. Ancient parasites can be recovered from mummies, skeletons, latrines, coprolites, and chamber pots. Analysis may involve microscopy, ELISA, proteomics, and recovery of DNA. A huge range of parasites can infect humans, ranging from helminths (worms), single-celled protozoa such as malaria and dysentery, and ectoparasites such as lice and fleas. Different parasites will have varying impact upon health depending upon the proportion of a society affected and the physiological consequences of infection upon the body. Here the concept of Disabilit-Adjusted Life Years (DALYs) is employed to estimate the health impact of parasites in past societies, and compare them. This should allow us for the first time to propose which past civilizations may have experienced the greatest health burden from the parasites affecting their populations.
This chapter introduces some of the broader ideas and themes of the book, especially the importance of the scientific method as a route to understanding the material universe. It contrasts the scientific perspective with the perspectives in other academic and non-academic disciplines (e.g. the historical, religious, and moral perspectives on human behavior). It gives examples of the value of the scientific perspective, especially the fact that it does not allow for a privileged position, and that it is a relatively democratic form of knowledge. It discusss some historical objections to science, and also reviews some misuse of science, but also the types of topics science cannot address (morality, aesthetics, etc.).
On November 24, 1859, the English naturalist Charles Robert Darwin published On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life . In that book (Darwin 1859), he argued that all organisms, living and dead, were produced by a long, slow, natural process, from a very few original organisms. He called the process “natural selection,” later giving it the alternative name of “the survival of the fittest.” This first chapter is devoted to presenting (without critical comment) the argument of the Origin, very much with an eye to the place and role of natural selection. As a preliminary, it should be noted that the Origin, for all it is one of the landmark works in the history of science, was written in a remarkably “user-friendly” manner. It is not technical, the arguments are straightforward, the illustrative examples are relevant and easy to grasp, the mathematics is at a minimum, meaning non-existent. Do not be deceived. The Origin is also a very carefully structured piece of work (Ruse 1979a). Darwin knew exactly what he was doing when he set pen to paper.
For many millennia, humans have gazed up in wonder at the night-time sky. The full panoply of the Milky Way is an awesome sight. The scale of space is immense. Is there life out there somewhere? If so, where, and what form does it take? In the space of a couple of sentences, we’ve already gone from generalized wonder to specific questions. The next step is from questions to hypotheses, or, in other words, proposed answers. Here are two such hypotheses that I’ll flesh out as the book progresses: first, life exists on trillions of planets in the universe; second, it usually follows evolutionary pathways that are broadly similar to – though different in detail from – those taken on Earth.
Forensic DNA typing was developed to improve our ability to conclusively identify an individual and distinguish that person from all others. Current DNA profiling techniques yield incredibly rare types, but definitive identification of one and only one individual using a DNA profile remains impossible. This fact may surprise you, as there is a popular misconception that a DNA profile is unique to an individual, with the exception of identical twins. You may be the only person in the world with your DNA profile, but we cannot know this short of typing everyone. What we can do is calculate probabilities. The result of a DNA profile translates into the probability that a person selected at random will have that same profile. In most cases, this probability is astonishingly tiny. Unfortunately, this probability is easily misinterpreted, a situation we will see and discuss many times in the coming chapters.
This Systematics Association Special Volume is the result of a symposium entitled, ‘Cryptic taxa - artefact of classification or evolutionary phenomena?’ held on June 17 as part of the Association’s 10th Biennial Meeting 2019. I began to realise that the notion of cryptic species touches the heart of several major debates in biology, including, ‘what are species?’, ‘how should we recognize them?’, the notion of punctuated equilibria and that of morphological stasis in the fossil record. Also, in the midst of a biodiversity crisis the phenomenon of cryptic species suggests that there may be a greater diversity of evolutionary lineages in need of conservation than has been suggested. The chapters that emerged from the Symposium show clearly how the topic of 'species' remains central to biodiversity sciences and the subject of wide-ranging and lively debate. In almost every chapter there is a call for change, either of direction or for the inclusion of new developments and data, and their focus ranges from abandoning species altogether to highlighting the weaknesses in current taxonomic process suggesting that our representation of the biological universe is still a chaotic torso.