We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a polarised abelian variety over a number field, we provide totally explicit upper bounds for the cardinality of the rational points whose Néron-Tate height is less than a small threshold. These imply new estimates for the number of torsion points as well as the minimal height of a non-torsion point. Our bounds involve the Faltings height and dimension of the abelian variety together with the degrees of the polarisation and the number field but we also get a stronger statement where we use certain successive minima associated to the period lattice at a fixed archimedean place, in the spirit of a result of David for elliptic curves.
In the early 1900s, Maillet [Introduction a la theorie des nombres transcendants et des proprietes arithmetiques des fonctions (Gauthier–Villars, Paris, 1906)] proved that the image of any Liouville number under a rational function with rational coefficients is again a Liouville number. The analogous result for quadratic Liouville matrices in higher dimensions turns out to fail. In fact, using a result by Kleinbock and Margulis [‘Flows on homogeneous spaces and Diophantine approximation on manifolds’, Ann. of Math. (2)148(1) (1998), 339–360], we show that among analytic matrix functions in dimension $n\ge 2$, Maillet’s invariance property is only true for Möbius transformations with special coefficients. This implies that the analogue in higher dimensions of an open question of Mahler on the existence of transcendental entire functions with Maillet’s property has a negative answer. However, extending a topological argument of Erdős [‘Representations of real numbers as sums and products of Liouville numbers’, Michigan Math. J.9 (1962), 59–60], we prove that for any injective continuous self-mapping on the space of rectangular matrices, many Liouville matrices are mapped to Liouville matrices. Dropping injectivity, we consider setups similar to Alniaçik and Saias [‘Une remarque sur les $G_{\delta }$-denses’, Arch. Math. (Basel)62(5) (1994), 425–426], and show that the situation depends on the matrix dimensions $m,n$. Finally, we discuss extensions of a related result by Burger [‘Diophantine inequalities and irrationality measures for certain transcendental numbers’, Indian J. Pure Appl. Math.32 (2001), 1591–1599] to quadratic matrices. We state several open problems along the way.
Our work owes its origin to a recent note of Ram Murty [‘Irrationality of zeros of the digamma function’, Number Theory in Memory of Eduard Wirsing (eds. H. Maier, R. Steuding and J. Steuding) (Springer, Cham, 2023), 237–243], in which he proves that all the zeros of the digamma function are irrational with at most one possible exception. We extend this investigation to higher-order polygamma functions.
In this article, we extend, with a great deal of generality, many results regarding the Hausdorff dimension of certain dynamical Diophantine coverings and shrinking target sets associated with a conformal iterated function system (IFS) previously established under the so-called open set condition. The novelty of the result we present is that it holds regardless of any separation assumption on the underlying IFS and thus extends to a large class of IFSs the previous results obtained by Beresnevitch and Velani [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2)164(3) (2006), 971–992] and by Barral and Seuret [The multifractal nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc.144(3) (2008), 707–727]. Moreover, it will be established that if S is conformal and satisfies mild separation assumptions (which are, for instance, satisfied for any self-similar IFS on $\mathbb {R}$ with algebraic parameters, no exact overlaps and similarity dimension smaller than $1$), then the classical result of Hill–Velani regarding the shrinking target problem associated with a conformal IFS satisfying the open set condition (and for which the Hausdorff measure was later computed by Allen and Barany [On the Hausdorff measure of shrinking target sets on self-conformal sets. Mathematika67 (2021), 807–839]) can be extended.
For an integer $k \geq 2$, let $P_{n}^{(k)}$ be the k-generalised Pell sequence, which starts with $0, \ldots ,0,1$ (k terms), and each term thereafter is given by the recurrence $P_{n}^{(k)} = 2 P_{n-1}^{(k)} +P_{n-2}^{(k)} +\cdots +P_{n-k}^{(k)}$. We search for perfect powers, which are sums or differences of two k-generalised Pell numbers.
We establish an effective improvement on the Liouville inequality for approximation to complex nonreal algebraic numbers by quadratic complex algebraic numbers.
Given a self-morphism $\phi$ on a projective variety defined over a number field k, we prove two results which bound the largest iterate of $\phi$ whose evaluation at P is quasi-integral with respect to a divisor D, uniformly across P defined over a field of bounded degree over k. The first result applies when the pullback of D by some iterate of $\phi$ breaks up into enough irreducible components which are numerical multiples of each other. The proof uses Le’s algebraic-point version of a result of Ji–Yan–Yu, which is based on Schmidt subspace theorem. The second result applies more generally but relies on a deep conjecture by Vojta for algebraic points. The second result is an extension of a recent result of Matsuzawa, based on the theory of asymptotic multiplicity. Both results are generalisations of Hsia–Silverman, which treated the case of morphisms on ${\mathbb{P}}^1$.
Let $b \geqslant 3$ be an integer and C(b, D) be the set of real numbers in [0,1] whose base b expansion only consists of digits in a set $D {\subseteq} \{0,...,b-1\}$. We study how close can numbers in C(b, D) be approximated by rational numbers with denominators being powers of some integer t and obtain a zero-full law for its Hausdorff measure in several circumstances. When b and t are multiplicatively dependent, our results correct an error of Levesley, Salp and Velani (Math. Ann.338 (2007), 97–118) and generalise their theorem. When b and t are multiplicatively independent but have the same prime divisors, we obtain a partial result on the Hausdorff measure and bounds for the Hausdorff dimension, which are close to the multiplicatively dependent case. Based on these results, several conjectures are proposed.
We establish new results on complex and $p$-adic linear independence on a class of semiabelian varieties. As applications, we obtain transcendence results concerning complex and $p$-adic Weierstrass sigma functions associated with elliptic curves.
We establish explicit constructions of Mahler’s p-adic $U_{m}$-numbers by using Ruban p-adic continued fraction expansions of algebraic irrational p-adic numbers of degree m.
where $\langle \cdot \rangle $ denotes the distance from the nearest integral vector. In this article, we obtain upper bounds for the Hausdorff dimensions of the set of $\epsilon $-badly approximable matrices for fixed target b and the set of $\epsilon $-badly approximable targets for fixed matrix A. Moreover, we give a Diophantine condition of A equivalent to the full Hausdorff dimension of the set of $\epsilon $-badly approximable targets for fixed A. The upper bounds are established by effectivizing entropy rigidity in homogeneous dynamics, which is of independent interest. For the A-fixed case, our method also works for the weighted setting where the supremum norms are replaced by certain weighted quasinorms.
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
We study the multifractal properties of the uniform approximation exponent and asymptotic approximation exponent in continued fractions. As a corollary, we calculate the Hausdorff dimension of the uniform Diophantine set
$$ \begin{align*} {\mathcal{U}(\hat{\nu})}= &\ \{x\in[0,1)\colon \text{for all }N\gg1,\text{ there exists }n\in[1,N],\\&\ \ \text{ such that }|T^{n}(x)-y| < |I_{N}(y)|^{\hat{\nu}}\} \end{align*} $$
for a class of quadratic irrational numbers $y\in [0,1)$. These results contribute to the study of the uniform Diophantine approximation, and apply to investigating the multifractal properties of run-length function in continued fractions.
We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for any irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2)172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded $\operatorname {SL}(d,\mathbb {R})$-horospheres in the space of affine lattices.
Schmidt games and the Cantor winning property give alternative notions of largeness, similar to the more standard notions of measure and category. Being intuitive, flexible, and applicable to recent research made them an active object of study. We survey the definitions of the most common variants and connections between them. A new game called the Cantor game is invented and helps with presenting a unifying framework. We prove surprising new results such as the coincidence of absolute winning and $1$ Cantor winning in metric spaces, and the fact that $1/2$ winning implies absolute winning for subsets of $\mathbb {R}$. We also suggest a prototypical example of a Cantor winning set to show the ubiquity of such sets in metric number theory and ergodic theory.
The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of the moduli values of certain isolated points picked out by Hodge-theoretic conditions. Using tools from transcendence theory, we provide a family of counterexamples to the attractor conjecture in almost all odd dimensions conditional on a specific case of the Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were first studied by Dolgachev. We also give constructions of new families of Calabi–Yau varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal to one, which would also give counterexamples to the attractor conjecture.
We show that there is a set $S \subseteq {\mathbb N}$ with lower density arbitrarily close to $1$ such that, for each sufficiently large real number $\alpha $, the inequality $|m\alpha -n| \geq 1$ holds for every pair $(m,n) \in S^2$. On the other hand, if $S \subseteq {\mathbb N}$ has density $1$, then, for each irrational $\alpha>0$ and any positive $\varepsilon $, there exist $m,n \in S$ for which $|m\alpha -n|<\varepsilon $.
The aim of the present paper is to derive effective discrepancy estimates for the distribution of rational points on general semisimple algebraic group varieties, in general families of subsets and at arbitrarily small scales. We establish mean-square, almost sure and uniform estimates for the discrepancy with explicit error bounds. We also prove an analogue of W. Schmidt's theorem, which establishes effective almost sure asymptotic counting of rational solutions to Diophantine inequalities in the Euclidean space. We formulate and prove a version of it for rational points on the group variety, with an effective bound which in some instances can be expected to be the best possible.
We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math.40(2) (1977), 171–193].
The Thue–Morse sequence $\{t(n)\}_{n\geqslant 0}$ is the indicator function of the parity of the number of ones in the binary expansion of nonnegative integers n, where $t(n)=1$ (resp. $=0$) if the binary expansion of n has an odd (resp. even) number of ones. In this paper, we generalize a recent result of E. Miyanohara by showing that, for a fixed Pisot or Salem number $\beta>\sqrt {\varphi }=1.272019\ldots $, the set of the numbers
is linearly independent over the field $\mathbb {Q}(\beta )$, where $\varphi :=(1+\sqrt {5})/2$ is the golden ratio. Our result yields that for any integer $k\geqslant 1$ and for any $a_1,a_2,\ldots ,a_k\in \mathbb {Q}(\beta )$, not all zero, the sequence {$a_1t(n)+a_2t(n^2)+\cdots +a_kt(n^k)\}_{n\geqslant 1}$ cannot be eventually periodic.