Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:10:37.553Z Has data issue: false hasContentIssue false

Linear independence of series related to the Thue–Morse sequence along powers

Published online by Cambridge University Press:  06 March 2024

Michael Coons*
Affiliation:
Department of Mathematics and Statistics, California State University, Chico, CA 95929, United States
Yohei Tachiya
Affiliation:
Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan e-mail: tachiya@hirosaki-u.ac.jp

Abstract

The Thue–Morse sequence $\{t(n)\}_{n\geqslant 0}$ is the indicator function of the parity of the number of ones in the binary expansion of nonnegative integers n, where $t(n)=1$ (resp. $=0$) if the binary expansion of n has an odd (resp. even) number of ones. In this paper, we generalize a recent result of E. Miyanohara by showing that, for a fixed Pisot or Salem number $\beta>\sqrt {\varphi }=1.272019\ldots $, the set of the numbers

$$\begin{align*}1,\quad \sum_{n\geqslant1}\frac{t(n)}{\beta^{n}},\quad \sum_{n\geqslant1}\frac{t(n^2)}{\beta^{n}},\quad \dots, \quad \sum_{n\geqslant1}\frac{t(n^k)}{\beta^{n}},\quad \dots \end{align*}$$
is linearly independent over the field $\mathbb {Q}(\beta )$, where $\varphi :=(1+\sqrt {5})/2$ is the golden ratio. Our result yields that for any integer $k\geqslant 1$ and for any $a_1,a_2,\ldots ,a_k\in \mathbb {Q}(\beta )$, not all zero, the sequence {$a_1t(n)+a_2t(n^2)+\cdots +a_kt(n^k)\}_{n\geqslant 1}$ cannot be eventually periodic.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. This research was partly supported by JSPS KAKENHI Grant Number JP22K03263.

References

Allouche, J.-P. and Shallit, J., Automatic sequences: theory, applications, generalizations, Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
Drmota, M., Mauduit, C., and Rivat, J., Normality along squares . J. Eur. Math. Soc. 21(2019), no. 2, 507548.CrossRefGoogle Scholar
Mahler, K., Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen . Math. Ann. 101(1929), 342366. Corrigendum 103(1930), 532.CrossRefGoogle Scholar
Miyanohara, E., An arithmetical property of the real numbers generated by Thue–Morse sequence along squares . Acta Math. Hungar. 170(2023), 430435.CrossRefGoogle Scholar
Moshe, Y., On the subword complexity of Thue–Morse polynomial extractions . Theor. Comput. Sci. 389(2007), 318329.CrossRefGoogle Scholar
Prouhet, E., Mémoire Sur quelques relations entre les puissances des nombres . C. R. Acad. Sci. Paris Sér. I 33(1851), 225.Google Scholar
Spiegelhofer, L., Thue–Morse along the sequence of cubes. Preprint, 2023, arXiv:2308.09498 [math.NT].Google Scholar
Thue, A., Über unendliche Zeichenreihen . Norske vid. Selsk. Skr. Mat. Nat. Kl. 7(1906), 122. Reprinted in: T. Nagell (Ed.), Selected mathematical papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 139–158.Google Scholar
Thue, A., Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen . Norske vid. Selsk. Skr. Mat. Nat. Kl. 1(1912), 167. Reprinted in: T. Nagell (Ed.), Selected mathematical papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 413–478.Google Scholar
Wall, D. D., Normal numbers. Ph.D. Thesis, University of California, Berkeley, 1950.Google Scholar