Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T15:59:14.029Z Has data issue: false hasContentIssue false

The Causal Structure of Natural Selection

Published online by Cambridge University Press:  28 September 2021

Charles H. Pence
Affiliation:
Université Catholique de Louvain, Belgium

Summary

Recent arguments concerning the nature of causation in evolutionary theory, now often known as the debate between the 'causalist' and 'statisticalist' positions, have involved answers to a variety of independent questions – definitions of key evolutionary concepts like natural selection, fitness, and genetic drift; causation in multi-level systems; or the nature of evolutionary explanations, among others. This Element offers a way to disentangle one set of these questions surrounding the causal structure of natural selection. Doing so allows us to clearly reconstruct the approach that some of these major competing interpretations of evolutionary theory have to this causal structure, highlighting particular features of philosophical interest within each. Further, those features concern problems not exclusive to the philosophy of biology. Connections between them and, in two case studies, contemporary metaphysics and philosophy of physics demonstrate the potential value of broader collaboration in the understanding of evolution.
Get access
Type
Element
Information
Online ISBN: 9781108680691
Publisher: Cambridge University Press
Print publication: 04 November 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, M. (2009a). Fitness “kinematics”: Biological function, altruism, and organism-environment development. Biology & Philosophy 24(4): 487504. DOI: https://doi.org/10.1007/s10539-009-9153-2.CrossRefGoogle Scholar
Abrams, M. (2009b). What determines biological fitness? The problem of the reference environment. Synthese 166(1): 2140. DOI: http://doi.org/10.1007/s11229-007-9255-9.Google Scholar
Abrams, M. (2012a). Measured, modeled, and causal conceptions of fitness. Frontiers in Genetics 3: 196. DOI: http://doi.org/10.3389/fgene.2012.00196.CrossRefGoogle ScholarPubMed
Abrams, M. (2012b). Mechanistic probability. Synthese 187(2): 343375. DOI: http://doi.org/10.1007/s11229-010-9830-3.Google Scholar
Abrams, M. (2015). Probability and manipulation: Evolution and simulation in applied population genetics. Erkenntnis 80(S3): 519549. DOI: http://doi.org/10.1007/s10670-015-9784-4.Google Scholar
Andersen, H. (2018). Complements, not competitors: Causal and mathematical explanations. British Journal for the Philosophy of Science 69(2): 485508. DOI: http://doi.org/10.1093/bjps/axw023.Google Scholar
Ariew, A. and Ernst, Z. (2009). What fitness can’t be. Erkenntnis 71(3): 289301. DOI: http://doi.org/10.1007/s10670-009-9183-9.Google Scholar
Ariew, A. and Lewontin, R. C. (2004). The confusions of fitness. British Journal for the Philosophy of Science 55(2): 347363. DOI: http://doi.org/10.1093/bjps/55.2.347.Google Scholar
Ariew, A., Rice, C., and Rohwer, Y. (2015). Autonomous-statistical explanations and natural selection. British Journal for the Philosophy of Science 66(3): 635658. DOI: http://doi.org/10.1093/bjps/axt054.Google Scholar
Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F., and Pérez-Salas, S. (1974). Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics 77 (2): 343.Google Scholar
Baker, A. (2005). Are there genuine mathematical explanations of physical phenomena? Mind 114(454): 223238.Google Scholar
Batterman, R. W. (1998). Why equilibrium statistical mechanics works: Universality and the renormalization group. Philosophy of Science 65(2): 183208. DOI: http://doi.org/10.1086/392634.Google Scholar
Batterman, R. W. (2000). Multiple realizability and universality. British Journal for the Philosophy of Science 51(1): 115145. DOI: http://doi.org/10.1093/bjps/51.1.115.Google Scholar
Beatty, J. H. (1987). Dobzhansky and drift: Facts, values and chance in evolutionary biology. In Krüger, L., Gigerenzer, G. and Morgan, M. S. (eds.), The Probabilistic Revolution, Volume 2: Ideas in the Sciences. Bradford Books, Cambridge, MA, pp. 271311.Google Scholar
Beatty, J. H. (1992). Random drift. In Keller, E. F. and Lloyd, E. A. (eds.), Keywords in Evolutionary Biology. Harvard University Press, Cambridge, MA, pp. 273281.Google Scholar
Beatty, J. H. (1993). The evolutionary contingency thesis. In Wolters, G. and Lennox, J. G. (eds.), Concepts, Theories, and Rationality in the Biological Sciences: The Second Pittsburgh-Konstanz Colloquium in the Philosophy of Science. University of Pittsburgh Press, Pittsburgh, pp. 4581.Google Scholar
Beatty, J. H. and Finsen, S. (1989). Rethinking the propensity interpretation of fitness: A peek inside Pandora’s box. In Ruse, M. (ed.), What the Philosophy of Biology Is: Essays for David Hull. Kluwer Academic Publishers, Dordrecht, pp. 1830.Google Scholar
Bhogal, H. (2020). Difference-making and deterministic chance. Philosophical Studies 178(7): 22152235. DOI: http://doi.org/10.1007/s11098-020-01538-4.Google Scholar
Bouchard, F. and Rosenberg, A. (2004). Fitness, probability and the principles of natural selection. British Journal for the Philosophy of Science 55(4): 693712. DOI: http://doi.org/10.1093/bjps/55.4.693.Google Scholar
Boyd, R. N. (2017). How philosophers “learn” from biology – reductionist and antireductionist “lessons.” In Smith, D. L. (ed.), How Biology Shapes Philosophy: New Foundations for Naturalism. Cambridge University Press, Cambridge, pp. 276301.Google Scholar
Bradie, M. (1986). Assessing evolutionary epistemology. Biology & Philosophy 1(4): 401459. DOI: http://doi.org/10.1007/BF00140962.Google Scholar
Brandon, R. N. (1990). The concept of environment in the theory of natural selection. In Adaptation and Environment. Princeton University Press, Princeton, NJ, pp. 4577.Google Scholar
Brandon, R. N. (2005). The difference between selection and drift: A reply to Millstein. Biology & Philosophy 20(1): 153170. DOI: http://doi.org/10.1007/s10539-004-1070-9.Google Scholar
Brandon, R. N. (2006). The principle of drift: Biology’s first law. Journal of Philosophy 103(7): 319335.Google Scholar
Chiu, L. (2019). Decoupling, commingling, and the evolutionary significance of experiential niche construction. In Uller, T. and Laland, K. N. (eds.), Evolutionary Causation: Biological and Philosophical Reflections. The Massachusetts Institute of Technology Press, Cambridge, MA, pp. 299322.Google Scholar
Currie, A. (2019). Scientific Knowledge and the Deep Past: History Matters. Cambridge University Press, Cambridge.Google Scholar
Dieckmann, U. (1997). Can adaptive dynamics invade? Trends in Ecology & Evolution 5347(4): 128131.Google Scholar
Douglas, H. E. (2009). Reintroducing prediction to explanation. Philosophy of Science 76(4): 444463. DOI: http://doi.org/10.1086/648111.Google Scholar
Doulcier, G., Takacs, P., and Bourrat, P. (2020). Taming fitness: Organism-environment interdependencies preclude long-term fitness forecasting. BioEssays 43(1): e2000157. DOI: http://doi.org/10.1002/bies.202000157.Google Scholar
Earnshaw, E. (2015). Evolutionary forces and the Hardy–Weinberg equilibrium. Biology & Philosophy 30 (3): 423437. DOI: http://doi.org/10.1007/s10539-014-9464-9.Google Scholar
Elgin, M. and Sober, E. (2017). Popper’s shifting appraisal of evolutionary theory. HOPOS 7(1): 3155. DOI: http://doi.org/10.1086/691119.Google Scholar
Endler, J. A. (1986). Natural Selection in the Wild. Princeton University Press, Princeton, NJ.Google Scholar
Eronen, M. I. (2015). Levels of organization: A deflationary account. Biology & Philosophy 30(1): 3958. DOI: http://doi.org/10.1007/s10539-014-9461-z.Google Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Philosophical Transactions of the Royal Society of Edinburgh 52: 399433.Google Scholar
Fisher, R. A. (1922). On the dominance ratio. Proceedings of the Royal Society of Edinburgh 42: 321341. DOI: http://doi.org/10.1016/S0092-8240(05)80012-6.Google Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
Fisher, R. A. and Stock, C. S. (1915). Cuénot on preadaptation: A criticism. Eugenics Review 7(1): 4661.Google ScholarPubMed
Galton, F. (1889). Natural Inheritance. Macmillan, London.Google Scholar
Gayon, J. (1998). Darwinism’s Struggle for Survival: Heredity and the Hypothesis of Natural Selection. Cambridge University Press, Cambridge.Google Scholar
Gillespie, J. H. (1974). Natural selection for within-generation variance in offspring number. Genetics 76(3): 601606.Google Scholar
Godfrey-Smith, P. (2009). Darwinian Populations and Natural Selection. Oxford University Press, Oxford.Google Scholar
Guay, A. and Sartenaer, O. (2016). A new look at emergence. Or when after is different. European Journal for Philosophy of Science 6 (2): 297322. DOI: http://doi.org/10.1007/s13194-016-0140-6.Google Scholar
Hacking, I. (1990). The Taming of Chance. Cambridge University Press, Cambridge.Google Scholar
Haufe, C. (2013). From necessary chances to biological laws. British Journal for the Philosophy of Science 64(2): 279295. DOI: http://doi.org/10.1093/bjps/axs001.CrossRefGoogle Scholar
Haug, M. C. (2007). Of mice and metaphysics: Natural selection and realized population-level properties. Philosophy of Science 74(4): 431451.Google Scholar
Hitchcock, C. and Velasco, J. D. (2014). Evolutionary and Newtonian forces. Ergo 1. DOI: http://doi.org/10.3998/ergo.12405314.0001.002.Google Scholar
Hodge, M. J. S. (1983). Darwin and the laws of the animate part of the terrestrial system (1835–1837): On the Lyellian origins of his zoonomical explanatory program. Studies in History of Biology 6: 1106.Google Scholar
Hodge, M. J. S. (1987). Natural selection as a causal, empirical, and probabilistic theory. In Krüger, L., Gigerenzer, G. and Morgan, M. S. (eds.), The Probabilistic Revolution, Volume 2: Ideas in the Sciences. Bradford Books, Cambridge, MA, pp. 233270.Google Scholar
Hodge, M. J. S. (1992). Biology and philosophy (including ideology): A study of Fisher and Wright. In Sarkar, S (ed.), The Founders of Evolutionary Genetics. Kluwer Academic Publishers, Dordrecht, pp. 231293.Google Scholar
Hull, D. L. (1986). On human nature. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986(2): 313.Google Scholar
Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese 177(2): 213245. DOI: http://doi.org/10.1007/s11229-010-9842-z.Google Scholar
Ismael, J. (2009). Probability in deterministic physics. Journal of Philosophy 106(2): 89108.CrossRefGoogle Scholar
Ismael, J. (2011). A modest proposal about chance. Journal of Philosophy 108(8): 416442.Google Scholar
Jenkin, F. (1867). [Review of] The Origin of Species. North British Review 46: 277318.Google Scholar
Khinchin, A. I. (1949). Mathematical Foundations of Statistical Mechanics. Dover, New York.Google Scholar
Kim, J. (1993). The nonreductivist’s troubles with mental causation. In Heil, J and Mele, A (eds.), Mental Causation. Oxford University Press, New York, pp. 189210.Google Scholar
Kisdi, É. and Geritz, S. A. H. (2010). Adaptive dynamics: A framework to model evolution in the ecological theatre. Journal of Mathematical Biology 61(1): 165–9. DOI: http://doi.org/10.1007/s00285-009-0300-9.Google Scholar
Lange, M. (1995). Are there natural laws covering particular biological species? Journal of Philosophy 92(8): 430451.Google Scholar
Lange, M. (2013). Really statistical explanations and genetic drift. Philosophy of Science 80(2): 169188. DOI: http://doi.org/10.1086/670323.Google Scholar
Lange, M. (2016). Because without Cause: Non-Causal Explanations in Science and Mathematics. Oxford University Press, Oxford.Google Scholar
Loux, M. J. (2006). Metaphysics: A Contemporary Introduction. 3rd ed. Routledge, New York.Google Scholar
Love, A. C. (2018). Individuation, individuality, and experimental practice in developmental biology. In Bueno, O, Chen, R.-L., and Fagan, M. B. (eds.), Individuation, Process, and Scientific Practice. Oxford University Press, Oxford, pp. 165191. DOI: http://doi.org/10.1093/oso/9780190636814.003.0008.Google Scholar
Luque, V. J. (2016). Drift and evolutionary forces: Scrutinizing the Newtonian analogy. Theoria 31(3): 397410.Google Scholar
Lyon, A. (2011). Deterministic probability: Neither chance nor credence. Synthese 182(3): 413432. DOI: http://doi.org/10.1007/s11229-010-9750-2.Google Scholar
Lyon, A. (2014). Why are normal distributions normal? British Journal for the Philosophy of Science 65(3): 621649. DOI: http://doi.org/10.1093/bjps/axs046.CrossRefGoogle Scholar
Machery, E. (2008). A plea for human nature. Philosophical Psychology 21(3): 321329. DOI: http://doi.org/10.1080/09515080802170119.Google Scholar
Matthen, M. (2009). Drift and “statistically abstractive explanation.Philosophy of Science 76(4): 464487. DOI: http://doi.org/10.1086/648063.Google Scholar
Matthen, M. and Ariew, A. (2002). Two ways of thinking about fitness and natural selection. Journal of Philosophy 99(2): 5583.Google Scholar
Matthen, M. and Ariew, A. (2009). Selection and causation. Philosophy of Science 76(2): 201224. DOI: http://doi.org/10.1086/648102.Google Scholar
Mayr, E. (1961). Cause and effect in biology. Science 134(3489): 15011506.Google Scholar
Mayr, E. (1976). Typological versus population thinking. Evolution and the Diversity of Life: Selected Essays. Belknap, Cambridge, MA, pp. 2629.Google Scholar
Mazumdar, P. M. H. (1992). Ideology and method: R. A. Fisher and research in eugenics. Eugenics, Human Genetics, and Human Failings: The Eugenics Society, Its Sources and Its Critics in Britain. Routledge, London, pp. 96145.Google Scholar
McLoone, B. (2018). Why a convincing argument for causalism cannot entirely eschew population-level properties: Discussion of Otsuka. Biology & Philosophy 33(1–2): 11. DOI: http://doi.org/10.1007/s10539-018-9620-8.Google Scholar
McShea, D. W. and Brandon, R. N. (2010). Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems. University of Chicago Press, Chicago.Google Scholar
Merlin, F. (2016). Weak randomness at the origin of biological variation: The case of genetic mutations. In Ramsey, G and Pence, C. H. (eds.), Chance in Evolution. University of Chicago Press, Chicago, pp. 176195.Google Scholar
Mills, S. K. and Beatty, J. H. (1979). The propensity interpretation of fitness. Philosophy of Science 46(2): 263286. DOI: http://doi.org/10.1086/288865.Google Scholar
Millstein, R. L. (2002). Are random drift and natural selection conceptually distinct? Biology & Philosophy 17(1): 3353. DOI: http://doi.org/10.1023/A:1012990800358.Google Scholar
Millstein, R. L. (2005). Selection vs. drift: A response to Brandon’s reply. Biology & Philosophy 20(1): 171175. DOI: http://doi.org/10.1007/s10539-004-6047-1.Google Scholar
Millstein, R. L. (2006). Natural selection as a population-level causal process. British Journal for the Philosophy of Science 57(4): 627653. DOI: http://doi.org/10.1093/bjps/axl025.Google Scholar
Millstein, R. L. (2008). Distinguishing drift and selection empirically: “The Great Snail Debate” of the 1950s. Journal of the History of Biology 41(2): 339367. DOI: http://doi.org/10.1007/s10739-007-9145-5.Google Scholar
Millstein, R. L. (2013). Natural selection and causal productivity. In Chao, H.-K., Chen, S.-T. and Millstein, R. L. (eds.), Mechanism and Causality in Biology and Economics. Springer, New York, pp. 147163.Google Scholar
Millstein, R. L. (2016). Probability in biology: The case of fitness. In Hájek, A. and Hitchcock, C. (eds.), The Oxford Handbook of Probability and Philosophy. Oxford University Press, Oxford, pp. 601622.Google Scholar
Millstein, R. L., Skipper, R. A., and Dietrich, M. R. (2009). (Mis)interpreting mathematical models: Drift as a physical process. Philosophy and Theory in Biology 1: e002.Google Scholar
Moore, J. (2007). R. A. Fisher: A faith fit for eugenics. Studies in History and Philosophy of Biological and Biomedical Sciences 38(1): 110135. DOI: http://doi.org/10.1016/j.shpsc.2006.12.007.Google Scholar
Nicholson, D. J. (2012). The concept of mechanism in biology. Studies in History and Philosophy of Biological and Biomedical Sciences 43(1): 152163. DOI: http://doi.org/10.1016/j.shpsc.2011.05.014.Google Scholar
Nicholson, D. J. (2014). The return of the organism as a fundamental explanatory concept in biology. Philosophy Compass 9(5): 347359. DOI: http://doi.org/10.1111/phc3.12128.Google Scholar
Okasha, S. (2006). Evolution and the Levels of Selection. Clarendon Press, Oxford.Google Scholar
Okasha, S. (2008). Fisher’s fundamental theorem of natural selection—a philosophical analysis. British Journal for the Philosophy of Science 59(3): 319351. DOI: http://doi.org/10.1093/bjps/axn010.Google Scholar
Otsuka, J. (2016). Causal foundations of evolutionary genetics. British Journal for the Philosophy of Science 67(1): 247269. DOI: http://doi.org/10.1093/bjps/axu039.Google Scholar
Otsuka, J. (2019). The Role of Mathematics in Evolutionary Theory. Cambridge University Press, Cambridge.Google Scholar
Otsuka, J., Turner, T., Allen, C., and Lloyd, E. A. (2011). Why the causal view of fitness survives. Philosophy of Science 78 (2): 209224. DOI: http://doi.org/10.1086/659219.Google Scholar
Pence, C. H. (2017). Is genetic drift a force? Synthese 194 (6): 19671988. DOI: http://doi.org/10.1007/s11229-016-1031-2.Google Scholar
Pence, C. H. (2018). Sir John F. W. Herschel and Charles Darwin: Nineteenth-century science and its methodology. HOPOS 8(1): 108140. DOI: http://doi.org/10.1086/695719.Google Scholar
Pence, C. H. (in press). The Rise of Chance in Evolutionary Theory: A Pompous Parade of Arithmetic. Elsevier.Google Scholar
Pence, C. H. (2021). W. F. R. Weldon changes his mind. European Journal for Philosophy of Science 11(3): 120. DOI: https://doi.org/10.1007/s13194-021-00384-3.Google Scholar
Pence, C. H. and Ramsey, G. (2013). A new foundation for the propensity interpretation of fitness. British Journal for the Philosophy of Science 64(4): 851881. DOI: http://doi.org/10.1093/bjps/axs037.Google Scholar
Pence, C. H. and Ramsey, G. (2015). Is organismic fitness at the basis of evolutionary theory? Philosophy of Science 82(5): 10811091. DOI: http://doi.org/10.1086/683442.Google Scholar
Pfeifer, J. (2005). Why selection and drift might be distinct. Philosophy of Science 72(5): 11351145. DOI: http://doi.org/10.1086/508122.Google Scholar
Pigliucci, M. (2007). Do we need an extended evolutionary synthesis? Evolution 61 (12): 27432749. DOI: http://doi.org/10.1111/j.1558-5646.2007.00246.x.Google Scholar
Plutynski, A. (2007). Drift: A historical and conceptual overview. Biological Theory 2(2): 156167. DOI: http://doi.org/10.1162/biot.2007.2.2.156.Google Scholar
Popper, K. R. (1974). Darwinism as a metaphysical research programme. In Schilpp, P. A. (ed.), The Philosophy of Karl Popper. Open Court Press, New York and Chicago, pp. 133143.Google Scholar
Ramsey, G. (2006). Block fitness. Studies in History and Philosophy of Biological and Biomedical Sciences 37(3): 484–498. DOI: http://doi.org/10.1016/j.shpsc.2006.06.009.Google Scholar
Ramsey, G. (2013a). Can fitness differences be a cause of evolution? Philosophy and Theory in Biology 5(1): e401.Google Scholar
Ramsey, G. (2013b). Driftability. Synthese 190(17): 39093928. DOI: http://doi.org/10.1007/s11229-012-0232-6.Google Scholar
Ramsey, G. (2013c). Organisms, traits, and population subdivisions: Two arguments against the causal conception of fitness? British Journal for the Philosophy of Science 64 (3): 589608. DOI: http://doi.org/10.1093/bjps/axs010.Google Scholar
Ramsey, G. (2016). The causal structure of evolutionary theory. Australasian Journal of Philosophy 94(3): 421434. DOI: http://doi.org/10.1080/00048402. 2015.1111398.Google Scholar
Reisman, K. and Forber, P. (2005). Manipulation and the causes of evolution. Philosophy of Science 72(5): 11131123. DOI: http://doi.org/10.1086/508120.CrossRefGoogle Scholar
Rice, S. H. (2004). Evolutionary Theory: Mathematical and Conceptual Foundations. Sinauer Associates, Sunderland, MA.Google Scholar
Sedgwick, A. (1860). Objections to Mr. Darwin’s theory of the origin of species. The Spectator 33: 285286.Google Scholar
Shapiro, L. and Sober, E. (2007). Epiphenomenalism – the dos and the don’ts. In Wolters, G and Machamer, P (eds.), Thinking about Causes: From Greek Philosophy to Modern Physics. University of Pittsburgh Press, Pittsburgh, pp. 235264.Google Scholar
Sheynin, O. B. (1980). On the history of the statistical method in biology. Archive for History of Exact Sciences 22(4): 323371.CrossRefGoogle ScholarPubMed
Sklar, L. (1973). Statistical explanation and ergodic theory. Philosophy of Science 40(2): 194212.Google Scholar
Sklar, L. (1992). Philosophy of Physics. Westview Press, Boulder, CO.Google Scholar
Skow, B. (2011). Does temperature have a metric structure? Philosophy of Science 78 (3): 472489. DOI: http://doi.org/10.1086/660304.Google Scholar
Sloan, P. R. (2009). The making of a philosophical naturalist. In Hodge, M. J. S. and Radick, G (eds.), The Cambridge Companion to Darwin, 2nd ed. Cambridge University Press, Cambridge, pp. 2143.Google Scholar
Sober, E. (1984). The Nature of Selection. The Massachusetts Institute of Technology Press, Cambridge, MA.Google Scholar
Sober, E. (2001). The two faces of fitness. In Singh, R. S. (ed.), Thinking about Evolution: Historical, Philosophical, and Political Perspectives. The Massachusetts Institute of Technology Press, Cambridge, MA, pp. 309321.Google Scholar
Sober, E. (2008). Evidence and Evolution: The Logic behind the Science. Cambridge University Press, Cambridge.Google Scholar
Sober, E. (2013). Trait fitness is not a propensity, but fitness variation is. Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3): 336341. DOI: http://doi.org/10.1016/j.shpsc.2013.03.002.Google Scholar
Stephens, C. (2004). Selection, drift, and the “forces” of evolution. Philosophy of Science 71 (4): 550570. DOI: http://doi.org/10.1086/423751.Google Scholar
Sterelny, K. (1996). The return of the group. Philosophy of Science 63(4): 562584. DOI: http://doi.org/10.1086/289977.Google Scholar
Sterrett, S. G. (2002). Darwin’s analogy between artificial and natural selection: How does it go? Studies in History and Philosophy of Biological and Biomedical Sciences 33 (1): 151168. DOI: http://doi.org/10.1016/S1369-8486(01)00039-5.Google Scholar
Stoltzfus, A. (2019). Understanding bias in the introduction of variation as an evolutionary cause. In Uller, T and Laland, K. N. (eds.), Evolutionary Causation: Biological and Philosophical Reflections. The Massachusetts Institute of Technology Press, Cambridge, MA, pp. 2961.Google Scholar
Stoltzfus, A. and Yampolsky, L. Y. (2009). Climbing mount probable: Mutation as a cause of nonrandomness in evolution. Journal of Heredity 100 (5): 637647. DOI: http://doi.org/10.1093/jhered/esp048.Google Scholar
Street, S. (2006). A Darwinian dilemma for realist theories of value. Philosophical Studies 127(1): 109166.Google Scholar
Strevens, M. (2011). Probability out of determinism. In Beisbart, C and Hartmann, S (eds.), Probabilities in Physics. Oxford University Press, Oxford, pp. 339364.Google Scholar
Strevens, M. (2013). Tychomancy: Inferring Probability from Causal Structure. Harvard University Press, Cambridge, MA.Google Scholar
Strevens, M. (2016). The reference class problem in evolutionarybiology: Distinguishing selection from drift. In Ramsey, G and Pence, C. H. (eds.), Chance in Evolution. University of Chicago Press, Chicago, pp. 145175.Google Scholar
Sturgeon, N. L. (1992). Nonmoral explanations. Philosophical Perspectives 6(Ethics): 97117.Google Scholar
Triviño, V. and Nuño de la Rosa, L. (2016). A causal dispositional account of fitness. History and Philosophy of the Life Sciences 38: 6. DOI: http://doi.org/10.1007/s40656-016-0102-5.Google Scholar
Turner, J. R. G. (1987). Random genetic drift, R. A. Fisher, and the Oxford School of ecological genetics. In Krüger, L, Gigerenzer, G and Morgan, M. S. (eds.), The Probabilistic Revolution, Volume 2: Ideas in the Sciences. Bradford Books, Cambridge, MA, pp. 313354.Google Scholar
Uller, T. and Laland, K. N. (eds.) (2019). Evolutionary Causation: Biological and Philosophical Reflections. The Massachusetts Institute of Technology Press, Cambridge, MA.Google Scholar
van Fraassen, B. C. (1989). Laws and Symmetry. Clarendon Press, Oxford.Google Scholar
Walsh, D. M. (2003). Fit and diversity: Explaining adaptive evolution. Philosophy of Science 70 (2): 280301. DOI: http://doi.org/10.1086/375468.Google Scholar
Walsh, D. M. (2007). The pomp of superfluous causes: The interpretation of evolutionary theory. Philosophy of Science 74 (3): 281303. DOI: http://doi.org/10.1086/520777.Google Scholar
Walsh, D. M. (2010). Not a sure thing: Fitness, probability, and causation. Philosophy of Science 77 (2): 147171. DOI: http://doi.org/10.1086/651320.Google Scholar
Walsh, D. M. (2013). Descriptions and models: Some responses to Abrams. Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3): 302308. DOI: http://doi.org/10.1016/j.shpsc.2013.06.004.Google Scholar
Walsh, D. M., Ariew, A. and Matthen, M. (2017). Four pillars of statisticalism. Philosophy, Theory, and Practice in Biology 9: 1. DOI: http://doi.org/10.3998/ptb.6959004.0009.001.Google Scholar
Walsh, D. M., Lewens, T. and Ariew, A. (2002). The trials of life: Natural selection and random drift. Philosophy of Science 69 (3): 429446. DOI: http://doi.org/10.1086/342454.Google Scholar
Weldon, W. F. R. (1893). On certain correlated variations in Carcinus mœnas. Proceedings of the Royal Society of London 54: 318329. DOI: http://doi.org/10.1098/rspl.1893.0078.Google Scholar
Wilson, J. M. (2010). From constitutional necessities to causal necessities. In Beebee, H (ed.), The Semantics and Metaphysics of Natural Kinds. Routledge, New York, pp. 192211.Google Scholar
Woodward, J. (2003). Making Things Happen. Oxford University Press, Oxford.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Causal Structure of Natural Selection
  • Charles H. Pence, Université Catholique de Louvain, Belgium
  • Online ISBN: 9781108680691
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Causal Structure of Natural Selection
  • Charles H. Pence, Université Catholique de Louvain, Belgium
  • Online ISBN: 9781108680691
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Causal Structure of Natural Selection
  • Charles H. Pence, Université Catholique de Louvain, Belgium
  • Online ISBN: 9781108680691
Available formats
×