Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T14:26:23.502Z Has data issue: false hasContentIssue false

Inheritance Systems and the Extended Evolutionary Synthesis

Published online by Cambridge University Press:  11 May 2020

Eva Jablonka
Affiliation:
Tel-Aviv University
Marion J. Lamb
Affiliation:
Tel-Aviv University

Summary

Current knowledge of the genetic, epigenetic, behavioural and symbolic systems of inheritance requires a revision and extension of the mid-twentieth-century, gene-based, 'Modern Synthesis' version of Darwinian evolutionary theory. We present the case for this by first outlining the history that led to the neo-Darwinian view of evolution. In the second section we describe and compare different types of inheritance, and in the third discuss the implications of a broad view of heredity for various aspects of evolutionary theory. We end with an examination of the philosophical and conceptual ramifications of evolutionary thinking that incorporates multiple inheritance systems.
Get access
Type
Element
Information
Online ISBN: 9781108685412
Publisher: Cambridge University Press
Print publication: 04 June 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aramayo, R. and Selker, E. U. (2013). Neurospora crassa, a model system for epigenetics research. Cold Spring Harbor Perspectives in Biology, 5(10), a017921. doi:10.1101/cshperspect.a017921Google Scholar
Arnos, K. S., Welch, K. O., Tekin, M. et al. (2008). A comparative analysis of the genetic epidemiology of deafness in the United States in two sets of pedigrees collected more than a century apart. American Journal of Human Genetics, 83(2), 200–7. doi:10.1016/j.ajhg.2008.07.001CrossRefGoogle ScholarPubMed
Avital, E. and Jablonka, E. (2000). Animal Traditions: Behavioural Inheritance in Evolution. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Baedke, J. (2018). Above the Gene Beyond Biology: Towards a Philosophy of Epigenetics. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
Bélteky, J., Agnvall, B., Bektic, L. et al. (2018). Epigenetics and early domestication: differences in hypothalamic DNA methylation between red junglefowl divergently selected for high or low fear of humans. Genetics Selection Evolution 50(1),13. doi:10.1186/s12711-018-0384-zGoogle Scholar
Bonduriansky, R. and Day, T. (2018). Extended Heredity: a New Understanding of Inheritance and Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Bowler, P. J. (2003). Evolution: the History of an Idea, 3rd ed. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Boyd, R. and Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago, IL: University of Chicago Press.Google Scholar
Braun, E. and David, L. (2011). The role of cellular plasticity in the evolution of regulatory novelty. In Gissis, S. B. and Jablonka, E., eds., Transformations of Lamarckism. Cambridge, MA: MIT Press, pp. 181–91.Google Scholar
Bronfman, Z. Z., Ginsburg, S. and Jablonka, E. (2014). Shaping the learning curve: epigenetic dynamics in neural plasticity. Frontiers in Integrative Neuroscience 8, 55. doi:10.3389/fnint.2014.00055Google Scholar
Campbell, D. T. (1974). Evolutionary epistemology. In Schilpp, P. A., ed., The Philosophy of Karl R. Popper. LaSalle, IL: Open Court, pp. 412–63.Google Scholar
Cavalli-Sforza, L. L. and Feldman, M. W. (1981). Cultural Transmission and Evolution. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Chakrabortee, S., Byers, J. S., Jones, S. et al. (2016). Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 167(2), 369–81. doi:10.1016/j.cell.2016.09.017CrossRefGoogle ScholarPubMed
Charlesworth, A. G., Seroussi, U. and Claycomb, J. M. (2019). Next-gen learning: the C. elegans approach. Cell 177(7), 1674–6. doi:10.1016/j.cell.2019.05.039CrossRefGoogle Scholar
Charlesworth, D., Barton, N. H. and Charlesworth, B. (2017). The sources of adaptive variation. Proceedings of the Royal Society B 284(1855), 20162864. doi:10.1098/rspb.2016.2864Google Scholar
Ciabrelli, F., Comoglio, F., Fellous, S. et al. (2017). Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nature Genetics 49(6), 876–86. doi.10.1038/ng.3848CrossRefGoogle ScholarPubMed
Claidière, N., Scott-Phillips, T. C. and Sperber, D. (2014). How Darwinian is cultural evolution? Philosophical Transactions of the Royal Society B 369(1642), 20130368. doi:10.1098/rstb.2013.0368Google Scholar
Clarke, E. (2016). A levels-of-selection approach to evolutionary individuality. Biology and Philosophy 31, 893911. doi:10.1007/s10539-016-9540-4Google Scholar
Cortijo, S., Wardenaar, R., Colomé-Tatché, M. et al. (2014). Mapping the epigenetic basis of complex traits. Science 343(6175), 1145–8. doi:10.1126/science.1248127Google Scholar
Crombie, A. C. (1988). Designed in the mind: Western visions of science, nature and humankind. History of Science 26, 112. doi:10.1177/007327538802600101Google Scholar
Danchin, E., Charmantier, A., Champagne, F. A. et al. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics 12(7), 475–86. doi:10.1038/nrg3028Google Scholar
Darwin, C. (1872). The Origin of Species, 6th ed. London: Murray.Google Scholar
Dawkins, R. (1976). The Selfish Gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1982). The Extended Phenotype: the Gene as the Unit of Selection. Oxford: Freeman.Google Scholar
Day, T. and Bonduriansky, R. (2011). A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. American Naturalist 178(2), E18E36. doi:10.1086/660911Google Scholar
Dennett, D. C. (2017). From Bacteria to Bach and Back: the Evolution of Minds. London: Allen Lane.Google Scholar
Diamond, J. (1997). Guns, Germs, and Steel: the Fates of Human Societies. New York, NY: Norton.Google Scholar
Dobzhansky, T. (1958). Species after Darwin. In Barnett, S. A., ed., A Century of Darwin. London: Heinemann, pp. 1955.Google Scholar
Donaldson-Matasci, M. C., Bergstrom, C. T. and Lachmann, M. (2010). The fitness value of information. Oikos 119(2), 219–30. doi:10.1111/j.1600-0706.2009.17781.xGoogle Scholar
Doolittle, W. F. and Inkpen, S. A. (2018). Processes and patterns of interaction as units of selection: an introduction to ITSNTS thinking. Proceedings of the National Academy of Sciences USA 115(16), 4006–14. doi:10.1073/pnas.1722232115Google Scholar
Dor, D. (2015). The Instruction of Imagination: Language as a Social Communication Technology. New York, NY: Oxford University Press.Google Scholar
Dor, D. and Jablonka, E. (2010). Plasticity and canalization in the evolution of linguistic communication. In, R. K. Larson, V. Déprez and Yamakido, H., eds., The Evolution of Human Language: Biolinguistic Perspectives. Cambridge, UK: Cambridge University Press. pp. 135–47.Google Scholar
Dunoyer, P., Melnyk, C., Molnar, A. et al. (2013). Plant mobile small RNAs. Cold Spring Harbor Perspectives in Biology 5(7), 017897. doi:10.1101/cshperspect.a017897Google Scholar
Dupré, J. and Nicholson, D. J. (2018). A manifesto for a processual philosophy of biology. In Nicholson, D. J. and Dupré, J., eds., Everything Flows: Towards a Processual Philosophy of Biology. Oxford: Oxford University Press, pp. 345.Google Scholar
Ephrussi, B. (1958). The cytoplasm and somatic cell variation. Journal of Cellular and Comparative Physiology 52(Suppl. 1), 3553. doi:10.1002/jcp.1030520405Google Scholar
Fisch, M. (2017). Creatively Undecided. Toward a History and Philosophy of Scientific Agency, Chicago, IL: University of Chicago Press.Google Scholar
Fleck, L. (1935/1979). Genesis and Development of a Scientific Fact, trans. F. Bradley and T. J. Trenn. Chicago, IL: Chicago University Press.Google Scholar
Gapp, K., Jawaid, A., Sarkies, P. et al. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience 17(5), 667–9. doi:10.1038/nn.3695Google Scholar
Gilbert, S. F. and Epel, D. (2015). Ecological Developmental Biology: the Environmental Regulation of Development, Health, and Evolution, 2nd ed. Sunderland, MA: Sinauer.Google Scholar
Ginsburg, S. and Jablonka, E. (2019). The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness. Cambridge, MA: MIT Press.Google Scholar
Gissis, S. B. and Jablonka, E. (2011). Transformations of Lamarckism: from Subtle Fluids to Molecular Biology. Cambridge, MA: MIT Press.Google Scholar
Gokhman, D., Meshorer, E. and Carmel, L. (2016). Epigenetics: It’s getting old. Past meets future in paleoepigenetics. Trends in Ecology and Evolution 31(4), 290300. doi:10.1016/j.tree.2016.01.010CrossRefGoogle ScholarPubMed
Griesemer, J. (2000). The units of evolutionary transition. Selection 1(1), 6780. doi:10.1556/Select.1.2000.1-3.7Google Scholar
Hacking, I. (1992). ‘Style’ for historians and philosophers. Studies in History and Philosophy of Science Part A 23(1), 120. doi:10.1016/0039-3681(92)90024-ZGoogle Scholar
Hardy, A. (1965). The Living Stream. London: Collins.Google Scholar
Hernday, A. D., Lohse, M. B., Fordyce, P. M. et al. (2013). Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Molecular Microbiology 90(1), 2235. doi:10.1111/mmi12329Google Scholar
Heyes, C. (2018). Cognitive Gadgets: the Cultural Evolution of Thinking. Cambridge, MA: Harvard University Press.Google Scholar
Hodgson, S., de Cates, C., Hodgson, J. et al. (2014). Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution 4(8), 1199–208. doi:10.1002/ece3.953Google Scholar
Holliday, R. (1987). The inheritance of epigenetic defects. Science 238(4824), 163–70. doi:10.1126/science.3310230Google Scholar
Holliday, R. and Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science 187(4173), 226–32. doi:10.1126/science.187.4173.226Google Scholar
Hu, J. and Barrett, R. D. H. (2017). Epigenetics in natural animal populations. Journal of Evolutionary Biology 30(9), 1612–32. doi:10.1111/jeb.13130Google Scholar
Hull, D. (1980). Individuality and selection. Annual Review of Ecology and Systematics 11, 311–32. doi:10.1146/annurev.es.11.110180.001523Google Scholar
Huxley, J. S. (1942). Evolution, the Modern Synthesis. London: Allen & Unwin.Google Scholar
Jablonka, E. (1994). Inheritance systems and the evolution of new levels of individuality. Journal of Theoretical Biology 170(3), 301–9. doi:10.1006/jtbi.1994.1191Google Scholar
Jablonka, E. (2002). Information: its interpretation, its inheritance, and its sharing. Philosophy of Science 69(4), 578605. doi:10.1086/344621Google Scholar
Jablonka, E. (2004a). The evolution of the peculiarities of mammalian sex chromosomes: an epigenetic view. BioEssays 26(12), 1327–32. doi:10.1002/bies.20140CrossRefGoogle ScholarPubMed
Jablonka, E. (2004b). From replicators to heritably varying traits: the extended phenotype revisited. Biology and Philosophy 19, 353–75. doi:10.1023/B:BIPH.0000036112.02199.7bGoogle Scholar
Jablonka, E. (2017). The evolutionary implications of epigenetic inheritance. Interface Focus 7(5), 20160135. doi:10.1098/rsfs.2016.0135.Google Scholar
Jablonka, E. and Lamb, M. J. (1989). The inheritance of acquired epigenetic variations. Journal of Theoretical Biology 139(1), 6983. doi:10.1016/S0022-5193(89)80058-XGoogle Scholar
Jablonka, E. and Lamb, M. J. (1990). The evolution of heteromorphic sex chromosomes. Biological Reviews 65(3), 249–76. doi:10.1111/j.1469-185X.1990.tb01426.xGoogle Scholar
Jablonka, E. and Lamb, M. J. (1995). Epigenetic Inheritance and Evolution: the Lamarckian Dimension. Oxford: Oxford University Press.Google Scholar
Jablonka, E. and Lamb, M. J. (2005). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral and Symbolic Variations in the History of Life, 1st ed. Cambridge, MA: MIT Press.Google Scholar
Jablonka, E. and Lamb, M. J. (2006). The evolution of information in the major transitions. Journal of Theoretical Biology 239(2), 236–46. doi:10.1016/j.jtbi.2005.08.038Google Scholar
Jablonka, E. and Lamb, M. J. (2010). Transgenerational epigenetic inheritance. In Pigliucci, M. and Müller, G. B., eds., Evolution – the Extended Synthesis. Cambridge, MA: MIT Press, pp. 137–74.Google Scholar
Jablonka, E. and Lamb, M. J. (2011). Changing thought styles: the concept of soft inheritance in the 20th century. In Egloff, R. and Fehr, J., eds., Vérité, Widerstand, Development: At Work with/Arbeiten mit/Travailler avec Ludwik Fleck. Zürich: Collegium Helveticum, pp. 119–56.Google Scholar
Jablonka, E. and Lamb, M. J. (2014). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral and Symbolic Variations in the History of Life, 2nd ed. Cambridge, MA: MIT Press.Google Scholar
Jablonka, E. and Noble, D. (2019). Systemic integration of different inheritance systems. Current Opinions in Systems Biology 13, 52–8. doi:10.1016/j.coisb.2018.10.002Google Scholar
Jablonka, E. and Raz, G. (2009). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Review of Biology 84(2), 131–76. doi:10.1086/598822Google Scholar
Johannsen, W. (1911). The genotype conception of heredity. American Naturalist 45(531), 129–59.Google Scholar
Klosin, A., Casas, E., Hidalgo-Carcedo, C. et al. (2017). Transgenerational transmission of environmental information in C. elegans. Science 356(6335), 320–3. doi:10.1126/science.aah6412Google Scholar
Koonin, E. (2019). CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. Biology and Philosophy 34(1), 9. doi:10.1007/s10539-018-9658-7Google Scholar
Kronholm, I., Bassett, A., Baulcombe, D. et al. (2017). Epigenetic and genetic contributions to adaptation in Chlamydomonas. Molecular Biology and Evolution 34(9), 2285–306. doi:10.1093/molbev/msx166CrossRefGoogle ScholarPubMed
Kuhn, T. S. (1970). The Structure of Scientific Revolutions, 2nd ed. Chicago, IL: University of Chicago Press.Google Scholar
Lachmann, M. and Jablonka, E. (1996). The inheritance of phenotypes: an adaptation to fluctuating environments, Journal of Theoretical Biology 181(1), 19. doi:10.1006/jtbi.1996.0109Google Scholar
Laland, K. N. (2017). Darwin’s Unfinished Symphony: How Culture Made the Human Mind. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Laland, K. N., Sterelny, K., Odling-Smee, J. et al. (2011). Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science 334(6062), 1512–16. doi:10.1126/science.1210879Google Scholar
Laland, K., Uller, T., Feldman, M. et al. (2014). Does evolutionary theory need a rethink? Yes, urgently. Nature 514(7521),161–4. doi:10.1038/514161a.Google Scholar
Laland, K. N., Uller, T., Feldman, M. W. et al. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B 282(1813), 20151019. doi:10.1098/rspb.2015.1019Google Scholar
Lamb, M. J. (2011) Attitudes to soft inheritance in Great Britain, 1930s–1970s. In Gissis, S. B. and Jablonka, E., eds., Transformations of Lamarckism. Cambridge, MA: MIT Press, pp. 109–20.Google Scholar
Lamm, E. (2018). Inheritance systems. In Zalta, E. N., ed., Stanford Encyclopedia of Philosophy (Winter 2018 edn), Stanford, CA: Stanford University. https://plato.stanford.edu/archives/win2018/entries/inheritance-systemsGoogle Scholar
Lamm, E. and Jablonka, E. (2008). The nurture of nature: hereditary plasticity in evolution. Philosophical Psychology 21(3), 305–19. doi:10.1080/09515080802170093CrossRefGoogle Scholar
Lenin, V. L. (1914/1930). The Teachings of Karl Marx. New York, NY: International Publishers.Google Scholar
Lewontin, D. (1970). The units of selection. Annual Review of Ecology and Systematics 1, 118. doi:10.1146/annurev.es.01.110170.000245Google Scholar
Li, J., Browning, S., Mahal, S. P. et al. (2010). Darwinian evolution of prions in cell culture. Science 327(5967), 869–72. doi:10.1126/science.1183218Google Scholar
Lindegren, C. C. (1966). The Cold War in Biology. Ann Arbor, MI: Planarian Press.Google Scholar
Logan, C. A. and Brauckmann, S. (2015). Controlling and culturing diversity: experimental zoology before World War II and Vienna’s Biologische Versuchsanstalt. Journal of Experimental Zoology 323A(4), 211–26. doi:10.1002/jez.1915Google Scholar
Markel, A. L. and Trut, L. N. (2011). Behavior, stress, and evolution in light of the Novosibirsk selection experiments. In Gissis, S. B. and Jablonka, E., eds., Transformations of Lamarckism. Cambridge, MA: MIT Press, pp. 171–80.Google Scholar
Maynard Smith, J. (1966). The Theory of Evolution, 2nd ed. Harmondsworth, UK: Penguin.Google Scholar
Maynard Smith, J. (1986). The Problems of Biology. Oxford: Oxford University.Google Scholar
Maynard Smith, J. and Szathmáry, E. (1995). The Major Transitions in Evolution. Oxford: Freeman.Google Scholar
Mayr, E. (1961). Cause and effect in biology. Science 134(3489),1501–6. doi:10.1126/science.134.3489.1501CrossRefGoogle ScholarPubMed
Mayr, E. (1980). Prologue: some thoughts on the history of the evolutionary synthesis. In Mayr, E. and Provine, W. B., eds., The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge, MA: Harvard University Press, pp. 148.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA: Harvard University Press.Google Scholar
Mayr, E. and Provine, W. B. (1980). The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge, MA: Harvard University Press.Google Scholar
Medawar, P. (1957). The Uniqueness of the Individual. London: Methuen.Google Scholar
Mesoudi, A. (2016). Cultural evolution: a review of theory, findings and controversies. Evolutionary Biology 43, 481–97. doi:10.1007/s11692-015-9320-0Google Scholar
Moreno, A. and Mossio, M. (2015). Biological Autonomy: a Philosophical and Theoretical Enquiry. Dordrecht: Springer.Google Scholar
Müller, G. B. (2017). Vivarium. Experimental, Quantitative, and Theoretical Biology at Vienna’s Biologische Versuchsanstalt. Cambridge, MA: MIT Press.Google Scholar
Nanney, D. L. (1958). Epigenetic control systems. Proceedings of the National Academy of Sciences USA 44(7), 712–17. doi:10.1073/pnas.44.7.712Google Scholar
Nätt, D., Rubin, C-J., Wright, D. et al. (2012). Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13, 59. doi:10.1186/1471-2164-13-59CrossRefGoogle ScholarPubMed
Nicholson, D. J. and Dupré, J. (2018). Everything Flows: towards a Processual Philosophy of Biology. Oxford: Oxford University Press.Google Scholar
Noble, D. (2017). Dance to the Tune of Life: Biological Relativity. Cambridge, UK: Cambridge University Press.Google Scholar
O’Malley, M. A. (2014). Philosophy of Microbiology. Cambridge, UK: Cambridge University Press.Google Scholar
Owen, R. (1843). Lectures on Comparative Anatomy Delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green, and Longmans.Google Scholar
Oyama, S., Griffiths, P. E. and Gray, R. D. (2001). Cycles of Contingency. Cambridge, MA: MIT Press.Google Scholar
Pál, C. (1998). Plasticity, memory and the adaptive landscape of the genotype. Proceedings of the Royal Society B 265(1403), 1319–23. doi:10.1098/rspb.1998.0436Google Scholar
Peterson, E. L. (2016). The Life Organic: the Theoretical Biology Club and the Roots of Epigenetics. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
Pocheville, A. and Danchin, E. (2017). Genetic assimilation and the paradox of blind variation. In Huneman, P. and Walsh, D., eds., Challenging the Modern Synthesis: Adaptation, Development, and Inheritance. New York, NY: Oxford University Press, pp. 111–36.Google Scholar
Pocheville, A., Griffiths, P. E. and Stotz, K. (2017). Comparing causes: an information-theoretic approach to specificity, proportionality and stability. In Leitgeb, H., Niiniluoto, I., Seppälä, P. et al., eds., Proceedings of the Fifteenth Congress of Logic, Methodology and Philosophy of Science. London: College Publications, pp. 261–86.Google Scholar
Powell, R. and Shea, N. (2014). Homology across inheritance systems. Biology and Philosophy 29, 781806. doi:10.1007/s10539-014-9433-3Google Scholar
Pradeau, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biology and Philosophy 31, 797817.Google Scholar
Price, G. R. (1970). Selection and covariance. Nature 227, 520–1. doi:10.1038/227520a0Google Scholar
Price, G. R. (c.1971/1995). The nature of selection. Journal of Theoretical Biology 175(3), 389–96. doi:10.1006/jtbi.1995.0149Google Scholar
Provine, W. B. (2001). The Origins of Theoretical Population Genetics, with a New Afterword. Chicago, IL: University of Chicago Press.Google Scholar
Przibram, H. (1903). Die neue Anstalt für experimentelle Biologie in Wien. Verhandlungen der Gesellschaft deutscher Naturforscher und Ärzte 74, 152–5.Google Scholar
Przibram, H. (1912). Die Umwelt des Keimplasmas. I. Das Arbeitsprogramm. Archiv für Entwicklungsmechanik 33, 666–81.Google Scholar
Quadrana, L. and Colot, V. (2016). Plant transgenerational epigenetics. Annual Review of Genetics 50, 467–91. doi:10.1146/annurev-genet-120215-035254Google Scholar
Rechavi, O. (2014). ‘Guest list’ or ‘black list’? Heritable small RNAs as immunogenic memories. Trends in Cell Biology 24(4), 212–20. doi:10.1016/j.tcb.2013.10.003Google Scholar
Richards, C. L., Alonso, C., Becker, C. et al. (2017). Ecological plant epigenetics: evidence from model and non‐model species, and the way forward. Ecology Letters 20(12), 1576–90. doi:10.1111/ele.12858Google Scholar
Rigal, M., Becker, C., Pélissier, T. et al. (2016). Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proceedings of the National Academy of Sciences USA 113(14), E2083E2092. doi:10.1073/pnas.1600672113Google Scholar
Riggs, A. D. (1975). X inactivation, differentiation, and DNA methylation. Cytogenetics and Cell Genetics 14(1), 925.CrossRefGoogle ScholarPubMed
Rivoire, O. and Leibler, S. (2014). A model for the generation and transmission of variations in evolution. Proceedings of the National Academy of Sciences USA 111(19), E1940E1949. doi:10.1073/pnas.1323901111Google Scholar
Rodrigues, J. A. and Zilberman, D. (2019). Evolution and function of genomic imprinting in plants. Genes and Development 29(24), 2517–31. doi:10.1101/gad.269902.115Google Scholar
Sager, R. and Kitchin, R. (1975). Selective silencing of eukaryotic DNA. Science 189(4201), 426–33. doi:10.1126/science.189.4201.426Google Scholar
Schmalhausen, I. I. (1949). Factors of Evolution: the Theory of Stabilizing Selection, trans. I. Dordick. Philadelphia, PA: Blakiston.Google Scholar
Scott-Phillips, T. C., Dickins, T. E. and West, S. A. (2011). Evolutionary theory and the ultimate–proximate distinction in the human behavioral sciences. Perspectives on Psychological Science 6(1), 3847. doi:10.1177/1745691610393528Google Scholar
Shapiro, J. A. (2011). Evolution: a View from the 21st Century. Upper Saddle River, NJ: FT Press Science.Google Scholar
Simpson, G. G. (1953). The Baldwin effect. Evolution 7(2), 110–17.Google Scholar
Skinner, M. K., Gurerrero-Bosagna, C., Haque, M. M. et al. (2014). Epigenetics and the evolution of Darwin’s finches. Genome Biology and Evolution 6(8), 1972–89. doi:10.1093/gbe/evu158Google Scholar
Smith, T. A., Martin, M. D., Nguyen, M. et al. (2016). Epigenetic divergence as a potential first step in darter speciation. Molecular Ecology 25(8), 1883–94. doi:10.1111/mec.13561Google Scholar
Smocovitis, V. B. (1996). Unifying Biology. The Evolutionary Synthesis and Evolutionary Biology. Princeton, NJ: Princeton University Press.Google Scholar
Soen, Y. (2014). Environmental disruption of host–microbe co-adaptation as a potential driving force in evolution. Frontiers in Genetics 5, 168. doi:10.3389/fgene.2014.00168Google Scholar
Soen, Y, Knafo, M and Elgart, M. (2015). A principle of organization which facilitates broad Lamarckian-like adaptations by improvisation. Biology Direct 10, 68. doi:10.1186/s13062-015-0097-yGoogle Scholar
Soto, C. (2012). Transmissible proteins: expanding the prion heresy. Cell 149(5), 968–77. doi:10.1016/j.cell.2012.05.007Google Scholar
Sperber, D. (1996). Explaining Culture: a Naturalistic Approach. Oxford: Blackwell.Google Scholar
Stajic, D., Perfeito, L. and Jansen, L. E. T. (2019). Epigenetic gene silencing alters the mechanisms and rate of evolutionary adaptation. Nature Ecology and Evolution 3(3), 491–8. doi:10.1038/s41559-018-0781-2CrossRefGoogle ScholarPubMed
Sterelny, K., Smith, K. C. and Dickison, M. (1996). The extended replicator. Biology and Philosophy 11(3), 377403. doi:10.1007/BF00128788Google Scholar
Tal, O., Kisdi, E. and Jablonka, E. (2010). Epigenetic contribution to covariance between relatives. Genetics 184(4), 1037–50. doi:10.1534/genetics.109.112466Google Scholar
Tavory, I., Ginsburg, S. and Jablonka, E. (2014). The reproduction of the social: a developmental system approach. In Caporael, L. R., Griesemer, J. R. and Wimsatt, W. C., eds., Developing Scaffolds in Evolution, Culture, and Cognition. Cambridge, MA: MIT Press, pp. 307–25.Google Scholar
Tikhodeyev, O. N. (2018). The mechanisms of epigenetic inheritance: how diverse are they? Biological Reviews 93(4), 19872005. doi:10.1111/brv.12429Google Scholar
Tomasello, M. (2014). A Natural History of Human Thinking. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Turchin, P., Currie, T. E., Whitehouse, H. et al. (2018). Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proceedings of the National Academy of Sciences USA 115(2), E144E151. doi:10.1073/pnas.1708800115Google Scholar
Uller, T. and Helanterä, H. (2017). Heredity and evolutionary theory. In. Huneman, P. and Walsh, D., eds., Challenging the Modern Synthesis. New York: Oxford University Press, pp. 280316.Google Scholar
Van der Graaf, A., Wardenaar, R., Neumann, D. A. et al. (2015). Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proceedings of the National Academy of Sciences USA 112(21), 6676–81. doi:10.1073/pnas.1424254112Google Scholar
Vilcinskas, A. (2016). The role of epigenetics in host–parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum. Zoology 119(4), 273280. doi:10.1016/j.zool.2016.05.004Google Scholar
Vrana, P. B. (2007). Genomic imprinting as a mechanism of reproductive isolation in mammals. Journal of Mammalogy 88(1), 523. doi:10.1644/06-MAMM-S-013R1.1Google Scholar
Waddington, C. H. (1957). The Strategy of the Genes. London: Allen & Unwin.Google Scholar
Waddington, C. H. (1960). Evolutionary adaptation. In Tax, S., ed., Evolution after Darwin, Vol. 1. The Evolution of Life. Chicago, IL: University of Chicago Press, pp. 381402.Google Scholar
Waddington, C. H. (1975). The Evolution of an Evolutionist. Edinburgh: Edinburgh University Press.Google Scholar
Watson, R. A. and Szathmáry, E. (2016). How can evolution learn? Trends in Ecology and Evolution 31(2), 147–57. doi:10.1016/j.tree.2015.11.009Google Scholar
Weber, B. H. and Depew, D. J. (2003). Evolution and Learning: the Baldwin Effect Reconsidered. Cambridge, MA: MIT Press.Google Scholar
Weismann, A. (1889). Essays upon Heredity and Kindred Biological Problems. Vol. 1. Trans. and ed. Poulton, E. B., Schönland, S. and Shipley, A. E.. Oxford: Clarendon Press.Google Scholar
Weissman, C. (2011). Germinal selection: a Weismannian solution to Lamarckian problematics. In Gissis, S. B. and Jablonka, E., eds., Transformations of Lamarckism. Cambridge, MA: MIT Press, pp. 5766.Google Scholar
Wells, H. G., Huxley, J. S. and Wells, G. P. (1929–1930/1934). The Science of Life. 3 vols. London: Amalgamated Press.Google Scholar
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. New York, NY: Oxford University Press.Google Scholar
Whitehead, H. (2017). Gene–culture coevolution in whales and dolphins. Proceedings of the National Academy of Sciences USA 114(30), 7814–21. doi:10.1073/pnas.1620736114Google Scholar
Whitehead, H. and Rendell, L. (2014). The Cultural Lives of Whales and Dolphins. Chicago, IL: University of Chicago Press.Google Scholar
Williams, G. C. (1966). Adaptation and Natural Selection. Princeton, NJ: Princeton University Press.Google Scholar
Wray, G. A, Hoekstra, H. E., Futuyma, D. J. et al. (2014). Does evolutionary theory need a rethink? No, all is well. Nature 514(7521), 161–4. doi:10.1038/514161aGoogle Scholar
Zhang, T-Y. and Meaney, M. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology 61, 439–66. doi:10.1146/annurev.psych.60.110707.163625Google Scholar
Zheng, X., Chen, L., Xia, H. et al. (2017). Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Scientific Reports 7, 39843. doi:10.1038/srep39843Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Inheritance Systems and the Extended Evolutionary Synthesis
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Inheritance Systems and the Extended Evolutionary Synthesis
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Inheritance Systems and the Extended Evolutionary Synthesis
Available formats
×