Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-w95db Total loading time: 0 Render date: 2024-10-11T06:01:54.613Z Has data issue: false hasContentIssue false

Lithium Isotopes

A Tracer of Past and Present Silicate Weathering

Published online by Cambridge University Press:  17 August 2021

Philip A. E. Pogge von Strandmann
Affiliation:
University College London
Mathieu Dellinger
Affiliation:
Durham University
A. Joshua West
Affiliation:
University of Southern California

Summary

Lithium isotopes are a relatively novel tracer of present and past silicate weathering processes. Given that silicate weathering is the primary long-term method by which CO2 is removed from the atmosphere, Li isotope research is going through an exciting phase. We show the weathering processes that fractionate dissolved and sedimentary Li isotope ratios, focusing on weathering intensity and clay formation. We then discuss the carbonate and silicate archive potential of past seawater δ7Li. These archives have been used to examine Li isotope changes across both short and long timescales. The former can demonstrate the rates at which the climate is stabilised from perturbations via weathering, a fundamental piece of the puzzle of the long-term carbon cycle.
Get access
Type
Element
Information
Online ISBN: 9781108990752
Publisher: Cambridge University Press
Print publication: 26 August 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Chan, L. H., Edmond, J. M., Thompson, G., and Gillis, K. (1992). Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 151160. – First demonstration of low-temperature Li isotope fractionation, during alteration of the oceanic crust.Google Scholar
Huh, Y., Chan, L. H., Zhang, L., and Edmond, J. M. (1998). Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochim. Cosmochim. Acta 62, 20392051. First compilation of global riverine δ7Li.CrossRefGoogle Scholar
Pistiner, J. S., and Henderson, G. M. (2003). Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett. 214, 327339. First experimental examination of Li isotope behaviour during weathering.CrossRefGoogle Scholar
Kisakürek, B., James, R. H., and Harris, N. B. W. (2005). Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth Planet. Sci. Lett. 237, 387401. First demonstration that Li isotopes track silicate weathering only.Google Scholar
Misra, S., and Froelich, P. N. (2012). Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science 335, 818823. Record of the seawater of the entire Cenozoic.CrossRefGoogle ScholarPubMed
Pogge von Strandmann, P. A. E., Jenkyns, H. C., and Woodfine, R. G. (2013). Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience 6, 668672. – First short-term record through a geological event.Google Scholar
Dellinger, M., Gaillardet, J., Bouchez, J., et al. (2015). Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta 164, 7193. – Paper that demonstrates the riverine Li isotope response to weathering intensity.Google Scholar
Pogge von Strandmann, P. A. E., and Henderson, G. M. (2015). The Li isotope response to mountain uplift. Geology 43, 6770. Demonstration of impact of supply vs. residence time on Li isotopes.Google Scholar
Dellinger, M., Hardisty, D. S., Planavsky, N. J., et al. (2020). The effects of diagenesis on lithium isotope ratios of shallow marine carbonates. Am. J. Sci. 320, 150184. Carbonate fractionation factors, and their use for palaeo-record reconstruction.Google Scholar
Hindshaw, R. S., Tosca, R., Gout, T. L., et al. (2019). Experimental constraints on Li isotope fractionation during clay formation. Geochim. Cosmochim. Acta 250, 219237 Fractionation during clay synthesis.Google Scholar

Secondary Sources

Bagard, M.-L., West, A. J., Newman, K., and Basu, A. R. (2015). Lithium isotope fractionation in the Ganges–Brahmaputra floodplain and implications for groundwater impact on seawater isotopic composition. Earth Planet. Sci. Lett. 432, 404414.Google Scholar
Bastian, L., Revel, M., Bayon, G., Dufour, A., and Vigier, N. (2017). Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa. Scientific Reports 7, 44231.Google Scholar
Bastian, L., Vigier, N., Reynaud, S., et al. (2018). Lithium isotope composition of marine biogenic carbonates and related reference materials. Geostandards and Geoanalytical Research 23, 403415.CrossRefGoogle Scholar
Bohlin, M. S., and Bickle, M. J. (2019). The reactive transport of Li as a monitor of weathering processes in kinetically limited weathering regimes. Earth Planet. Sci. Lett. 511, 233243.Google Scholar
Bohlin, M. S., Misra, S., Lloyd, N., Elderfield, H., and Bickle, M. J. (2018). High‐precision determination of lithium and magnesium isotopes utilising single column separation and multi‐collector inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry 32, 93104.Google Scholar
Caves Rugenstein, J. K., Ibarra, D. E., and von Blanckenburg, F. (2019). Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99102.CrossRefGoogle ScholarPubMed
Clergue, C., Dellinger, M., Buss, H. L., et al. (2015). Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles). Chem. Geol. 414, 2841.Google Scholar
Colbourn, G., Ridgwell, A., and Lenton, T. M. (2015). The time scale of the silicate weathering negative feedback on atmospheric CO2. Global Biogeochemical Cycles 29, 583596.CrossRefGoogle Scholar
Coogan, L. A., Gillis, K. M., Pope, M., and Spence, J. (2017). The role of low-temperature (off-axis) alteration of the oceanic crust in the global Li-cycle: Insights from the Troodos ophiolite. Geochim. Cosmochim. Acta 203, 201215.Google Scholar
Decarreau, A., Vigier, N., Pálková, H., et al. (2012). Partitioning of lithium between smectite and solution: An experimental approach. Geochim. Cosmochim. Acta 85, 314325.Google Scholar
Dellinger, M., Bouchez, J., Gaillardet, J., Faure, L., and Moureau, J. (2017). Tracing weathering regimes using the lithium isotope composition of detrital sediments. Geology 45 (5). pp. 411414.CrossRefGoogle Scholar
Dellinger, M., West, A. J., Paris, G., et al. (2018). The Li isotope composition of marine biogenic carbonates: Patterns and mechanisms. Geochim. Cosmochim. Acta 236, pp. 315–335.Google Scholar
Gabitov, R. I., Schmitt, A. K., Rosner, M., et al. (2011). In situ δ7Li, Li/ Ca, and Mg/Ca analyses of synthetic aragonites. Geochem. Geophys. Geosyst. 12, Q03001, http://doi.org/10.1029/2010GC003322.Google Scholar
Gou, L.-F., Jin, Z., Pogge von Strandmann, P. A. E., et al. (2019). Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation. Geochim. Cosmochim. Acta 248, 88108.Google Scholar
Hathorne, E. C., and James, R. H. (2006). Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet. Sci. Lett. 246, 393406.CrossRefGoogle Scholar
Huh, Y., Chan, L. H., and Edmond, J. M. (2001). Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet. Sci. Lett. 194, 189199.Google Scholar
Jeffcoate, A. B., Elliott, T., Thomas, A., and Bouman, C. (2004). Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostandards and Geoanalytical Research 28, 161172.CrossRefGoogle Scholar
Kennedy, M. J., and Wagner, T. (2011). Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proceedings of the National Academy of Sciences 108, 97769781.Google Scholar
Lechler, M., Pogge von Strandmann, P. A. E., Jenkyns, H. C., Prosser, G., and Parente, M. (2015). Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. Lett. 432, 210222.Google Scholar
Lemarchand, E., Chabaux, F., Vigier, N., Millot, R., and Pierret, M. C. (2010). Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochim. Cosmochim. Acta 74, 46124628.Google Scholar
Li, G., West, A. J. 2014. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks. Earth Planet. Sci. Lett. 401, 284293.Google Scholar
Li, S., Gaschnig, R. M., and Rudnick, R. L. (2016). Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochim. Cosmochim. Acta 176, 96117.Google Scholar
Li, W., and Liu, X.-M. (2020). Experimental investigation of lithium isotope fractionation during kaolinite adsorption: Implications for chemical weathering. Geochim. Cosmochim. Acta 284, 156172.CrossRefGoogle Scholar
Li, W., Liu, X.-M., and Chadwick, O. A. (2020). Lithium isotope behavior in Hawaiian regoliths: Soil-atmosphere-biosphere exchanges. Geochim. Cosmochim. Acta 285, 175192.Google Scholar
Liu, X.-M., and Li, W. (2019). Lithium isotopic analysis by quadrupole-ICP-MS: Optimization for geological samples. J. Anal. At. Spectrom. 34, 17061717.CrossRefGoogle Scholar
Liu, X.-M., Wanner, C., Rudnick, R. L., and McDonough, W. F. (2015). Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts. Earth Planet. Sci. Lett. 409, 212224.Google Scholar
Ma, T., Weynell, M., Li, S. L., et al. (2020). Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments. Geochim. Cosmochim. Acta 280, 4665.Google Scholar
Marriott, C. S., Henderson, G. M., Belshaw, N. S., and Tudhope, A. W. (2004a). Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet. Sci. Lett. 222, 615624.Google Scholar
Marriott, C. S., Henderson, G. M., Crompton, R., Staubwasser, M., and Shaw, S. (2004b). Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem. Geol. 212, 515.Google Scholar
Millot, R., Vigier, N., and Gaillardet, J. (2010). Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim. Cosmochim. Acta 74, 38973912.Google Scholar
Misra, S., and Froelich, P. N. (2009). Measurement of lithium isotope ratios by quadrupole-ICP-MS: Application to seawater and natural carbonates. J. Anal. At. Spectrom. 24, 15241533.Google Scholar
Murphy, M. J., Porcelli, D., Pogge von Strandmann, P. A. E., et al. (2019). Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes. Geochim. Cosmochim. Acta 245, 154171.Google Scholar
Penniston-Dorland, S., Liu, X.-M., and Rudnick, R. L. (2017). Lithium isotope geochemistry, Rev. Min. Geochem., pp. 165217.Google Scholar
Pogge von Strandmann, P. A. E., Burton, K. W., Opfergelt, S., et al. (2016). The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland Chem. Geol. 445, 413.Google Scholar
Pogge von Strandmann, P. A. E., Desrochers, A., Murphy, M. J., et al. (2017a). Global climate stabilisation by chemical weathering during the Hirnantian glaciation. GPL 3, 230237.Google Scholar
Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al. (2011). Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim. Cosmochim. Acta 75, 52475268.Google Scholar
Pogge von Strandmann, P. A. E., Fraser, W. T., Hammond, S. J., et al. (2019a). Experimental determination of Li isotope behaviour during basalt weathering. Chem. Geol. 517, 3443.Google Scholar
Pogge von Strandmann, P. A. E., Frings, P. J., and Murphy, M. J. (2017b). Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. Geochim. Cosmochim. Acta 198, 1731.CrossRefGoogle Scholar
Pogge von Strandmann, P. A. E., Kasemann, S. A., and Wimpenny, J. B. (2020). Lithium and lithium isotopes in Earth’s surface cycles. Elements 16, 253258.Google Scholar
Pogge von Strandmann, P. A. E., Schmidt, D. N., Planavsky, N. J., et al. (2019b). Assessing bulk carbonates as archives for seawater Li isotope ratios. Chem. Geol. 530, 119338.Google Scholar
Pogge von Strandmann, P. A. E., Vaks, A., Bar-Matthews, M., et al. (2017c). Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles. Earth Planet. Sci. Lett. 469, 6474.Google Scholar
Raymo, M. E., Ruddiman, W. F., and Froelich, P. N. (1988). Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649653.Google Scholar
Roberts, J., Kaczmarek, K., Langer, G., et al. (2018). Lithium isotopic composition of benthic foraminifera: A new proxy for paleo-pH reconstruction. Geochim. Cosmochim. Acta 236, 336350.Google Scholar
Rollion-Bard, C., Vigier, N., Meiborn, A., et al. (2009). Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals. Earth Planet. Sci. Lett. 286, 6370.Google Scholar
Seyedali, M., Coogan, L. A., and Gillis, K. M. (2021). Li-isotope exchange during low-temperature alteration of the upper oceanic crust at DSDP Sites 417 and 418. Geochim. Cosmochim. Acta 294, 160173.Google Scholar
Sun, H., Xiao, Y., Gao, Y., et al. (2018). Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proceedings of the National Academy of Sciences 115, 37823787.Google Scholar
Teng, F. Z., Li, W. Y., Rudnick, R. L., and Gardner, L. R. (2010). Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet. Sci. Lett. 300, 6371.Google Scholar
Tomascak, P. B., Magna, T., and Dohmen, R. (2016). Advances in Lithium Isotope Geochemistry. Springer.CrossRefGoogle Scholar
Ullmann, C. V., Campbell, H. J., Frei, R., et al. (2013). Partial diagenetic overprint of Late Jurassic belemnites from New Zealand: Implications for the preservation potential of d7Li values in calcite fossils. Geochim. Cosmochim. Acta 120, 8096.CrossRefGoogle Scholar
Vigier, N., Decarreau, A., Millot, R., et al. (2008). Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta 72, 780792.Google Scholar
Vigier, N., and Godderis, Y. (2015). A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: The key role of climate. Climate of the Past 11, 635645.Google Scholar
Vigier, N., Rollion-Bard, C., Levenson, Y., and Erez, J. (2015). Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC). C. R. Geosci. 347, 4351.Google Scholar
Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of Earth’s surface-temperature. Journal of Geophysical Research – Oceans and Atmospheres 86, 97769782.Google Scholar
Wanner, C., Sonnenthal, E. L., and Liu, X.-M. (2014). Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering? Chem. Geol. 381, 154167.Google Scholar
Washington, K. E., West, A. J., Kalderson-Asael, B., et al. (2020). Lithium isotope composition of modern and fossilized Cenozoic brachiopods. Geology, in press. doi: https://doi.org/10.1130/G47558.1Google Scholar
Wei, G.-Y., Wei, W., Wang, D., et al. (2020). Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth Planet. Sci. Lett. 539, 116244.Google Scholar
West, A. J., Galy, A., and Bickle, M. (2005). Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211228.Google Scholar
Wimpenny, J., Colla, C. A., Yu, P., et al. (2015). Lithium isotope fractionation during uptake by gibbsite. Geochim. Cosmochim. Acta 168, 133150.Google Scholar
Wimpenny, J., Gislason, S. R., James, R. H., et al. (2010). The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim. Cosmochim. Acta 74, 52595279.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lithium Isotopes
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Lithium Isotopes
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Lithium Isotopes
Available formats
×