Skip to main content Accessibility help
×
Hostname: page-component-7dd5485656-frp75 Total loading time: 0 Render date: 2025-10-22T02:22:34.674Z Has data issue: false hasContentIssue false

Nonmonotonic Logic

Published online by Cambridge University Press:  18 October 2025

Christian Straßer
Affiliation:
Ruhr University Bochum

Summary

Nonmonotonic logics serve as formal models of defeasible reasoning, a type of reasoning where conclusions are drawn absent absolute certainty. Defeasible reasoning takes place when scientists interpret experiments, in medical diagnosis, and in practical everyday situations. Given its wide range of applications, nonmonotonic logic is of interest to philosophy, psychology, and artificial intelligence. This Element provides a systematic introduction to the multifaceted world of nonmonotonic logics. Part I familiarizes the reader with basic concepts and three central methodologies: formal argumentation, consistent accumulation, and semantic methods. Parts II–IV provide a deeper understanding of each of these methods by introducing prominent logics within each paradigm. Despite the apparent lack of unification in the domain of nonmonotonic logics, this Element reveals connections between the three paradigms by demonstrating translations among them. Whether you're a novice or an experienced traveler, this Element provides a reliable map for navigating the landscape of nonmonotonic logic.
Get access

Information

Type
Element
Information
Online ISBN: 9781108981699
Publisher: Cambridge University Press
Print publication: 13 November 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Adams, E. W. (1975). The logic of conditionals. D. Reidel Publishing Co.CrossRefGoogle Scholar
Antonelli, G. A. (1999). A directly cautious theory of defeasible consequence for default logic via the notion of general extension. Artificial Intelligence, 109(1), 71109.CrossRefGoogle Scholar
Antoniou, G., & Wang, K. (2007). Default logic. In Gabbay, D. & Woods, J. (Eds.), Handbook of the history of logic (pp. 517556, Vol. 8). North-Holland.Google Scholar
Arieli, O., & Avron, A. (2000). General patterns for nonmonotonic reasoning: From basic entailments to plausible relations. Logic Journal of the IGPL, 8, 119148.CrossRefGoogle Scholar
Arieli, O., Borg, A., & Heyninck, J. (2019). A review of the relations between logical argumentation and reasoning with maximal consistency. Annals of Mathematics and Artificial Intelligence, 87(3), 187226.CrossRefGoogle Scholar
Arieli, O., Borg, A., Heyninck, J., & Straßer, C. (2021a). Logic-based approaches to formal argumentation. Journal of Applied Logics - IfCoLog Journal, 8(6), 17931898.Google Scholar
Arieli, O., Borg, A., & Straßer, C. (2021b). Characterizations and classifications of argumentative entailments. In Bienvenu, M., Lakemeyer, G., & Erdem, E. (Eds.), Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, 5262. Curran Associates, Inc.Google Scholar
Arieli, O., Borg, A., & Straßer, C. (2023). A postulate-deriven study of logical argumentation. Artificial Intelligence, 103966.CrossRefGoogle Scholar
Arieli, O., & Straßer, C. (2015). Sequent-based logical argumentation. Argument and Computation, 6(1), 7399.CrossRefGoogle Scholar
, Aristotle. (1984). The complete works of Aristotle. The revised Oxford translation. One volume digital edition. Princeton University Press.Google Scholar
Asher, N., & Morreau, M. (1991). Commonsense entailment: A modal theory of nonmonotonic reasoning. In van Eijck, J. (Ed.), Logics in AI. Lecture Notes in Computer Science, vol. 478. Springer. DOI: https://doi.org/10.1007/BFb0018430.Google Scholar
Asher, N., & Pelletier, F. J. (2012). More truths about generic truth. In Mari, A., Beyssade, C., & Prete, F. Del (Eds.), Genericity, 312333. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199691807.003.0012.CrossRefGoogle Scholar
Baroni, P., Gabbay, D., & Giacomin, M. (Eds.). (2018, February). Handbook of formal argumentation. College Publications.Google Scholar
Baroni, P., Giacomin, M., & Guida, G. (2001). On the notion of strength in argumentation: Overcoming the epistemic/practical dichotomy. ECSQARU Workshop Adventures in Argumentation, 1–8. IRIS Institutional Research Information System: OPENBS Open Archive UniBS. https://iris.unibs.it/handle/11379/159298.Google Scholar
Batens, D. (1986). Dialectical dynamics within formal logics. Logique et Analyse, 114, 161173.Google Scholar
Batens, D. (2007). A universal logic approach to adaptive logics. Logica Universalis, 1(1), 221242.CrossRefGoogle Scholar
Batens, D. (2011). Logics for qualitative inductive generalization. Studia Logica, 97(1), 6180.CrossRefGoogle Scholar
Beirlaen, M., & Aliseda, A. (2014). A conditional logic for abduction. Synthese, 191(15), 37333758.CrossRefGoogle Scholar
Beirlaen, M., Heyninck, J., Pardo, P., & Straßer, C. (2018). Argument strength in formal argumentation. Journal of Applied Logics – IfCoLog Journal, 5(3), 629675.Google Scholar
Benferhat, S., Bonnefon, J. F., & da Silva Neves, R. (2005). An overview of possibilistic handling of default reasoning, with experimental studies. Synthese, 146(1–2), 5370.CrossRefGoogle Scholar
Benferhat, S., Cayrol, C., Dubois, D., Lang, J., & Prade, H. (1993). Inconsistency management and prioritized syntax-based entailment. International Joint Conference on Artificial Intelligence, 93, 640645.Google Scholar
Benferhat, S., Dubois, D., & Prade, H. (1992). Representing default rules in possibilistic logic. In Nebel, B., Rich, C., & Swartout, W. R. (Eds.), Proceedings of the Third International Conference on the Principles of Knowledge Representation and Reasoning, 673684. Morgan Kaufmann Publishers.Google Scholar
Benferhat, S., Dubois, D., & Prade, H. (1997). Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study. Part 1: The flat case. Studia Logica, 58, 1745.CrossRefGoogle Scholar
Benferhat, S., Dubois, D., & Prade, H. (1999). Possibilistic and standard probabilistic semantics of conditional knowledge bases. Journal of Logic and Computation, 9(6), 873895.CrossRefGoogle Scholar
Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128(1), 203235.CrossRefGoogle Scholar
Besold, T. R., d’Avila Garcez, A., Stenning, K., van der Torre, L., & van Lambalgen, M. (2017). Reasoning in non-probabilistic uncertainty: Logic programming and neural-symbolic computing as examples. Minds and Machines, 27(1), 3777.CrossRefGoogle Scholar
Bochman, A. (2005). Explanatory nonmonotonic reasoning. World Scientific Publishing.CrossRefGoogle Scholar
Bondarenko, A., Dung, P. M., Kowalski, R. A., & Toni, F. (1997). An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93, 63101.CrossRefGoogle Scholar
Borg, A. (2020). Assumptive sequent-based argumentation. Journal of Applied Logics, 2631(3), 227294.Google Scholar
Borg, A., & Straßer, C. (2018). Relevance in structured argumentation. In Lang, J. (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 17531759.CrossRefGoogle Scholar
Boutilier, C. (1994a). Conditional logics of normality: A modal approach. Artificial Intelligence, 68(1), 87154.CrossRefGoogle Scholar
Boutilier, C. (1994b). Unifying default reasoning and belief revision in a modal framework. Artificial Intelligence, 68(1), 3385.CrossRefGoogle Scholar
Brandom, R. (2009). Articulating reasons: An introduction to inferentialism. Harvard University Press.CrossRefGoogle Scholar
Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (II), 89, 10431048.Google Scholar
Brewka, G. (1991). Cumulative default logic: In defense of nonmonotonic inference rules. Artificial Intelligence, 50(2), 183205.CrossRefGoogle Scholar
Brown, J., & Simion, M. (2021). Reasons, justification, and defeat. Oxford University Press.CrossRefGoogle Scholar
Byrne, R. M. (1989). Suppressing valid inferences with conditionals. Cognition, 31(1), 6183.CrossRefGoogle ScholarPubMed
Caminada, M., & Amgoud, L. (2007). On the evaluation of argumentation formalisms. Artificial Intelligence, 171, 286310.CrossRefGoogle Scholar
Caminada, M., Carnielli, W. A., & Dunne, P. E. (2012). Semi-stable semantics. Journal of Logic and Computation, 22(5), 12071254.CrossRefGoogle Scholar
Caminada, M., Modgil, S., & Oren, N. (2014). Preferences and unrestricted rebut. Computational Models of Argument: Proceedings of COMMA 2014, 209220.Google Scholar
Caminada, M., & Schulz, C. (2017). On the equivalence between assumptionbased argumentation and logic programming. Journal of Artificial Intelligence Research, 60, 779825.CrossRefGoogle Scholar
Cayrol, C. (1995). On the relation between argumentation and non-monotonic coherence-based entailment. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 95, 14431448.Google Scholar
Chisholm, R. M. (1963). Contrary-to-duty imperatives and deontic logic. Analysis, 24, 3336.CrossRefGoogle Scholar
Clark, K. L. (1977). Negation as failure. In Gallaire, H., and Minker, J. (Eds.), Logic and Data Bases, 293322. Springer. DOI: https://doi.org/10.1007/978-1-4684-3384-5_11.Google Scholar
Čyras, K., & Toni, F. (2015). Non-monotonic inference properties for assumptionbased argumentation. In Black, E., Modgil, S., N., & , Oren (Eds.), Theory and Applications of Formal Argumentation, vol. 9524, 92111. Springer. DOI: https://doi.org/10.1007/978-3-319-28460-6_6.CrossRefGoogle Scholar
Delgrande, J. P. (1987). A first-order conditional logic for prototypical properties. Artificial Intelligence, 33(1), 105130.CrossRefGoogle Scholar
Delgrande, J. P. (1998). On first-order conditional logics. Artificial Intelligence, 105(1), 105137.CrossRefGoogle Scholar
Denecker, M., Marek, V. W., & Truszczynski, M. (2011). Reiter’s default logic is a logic of autoepistemic reasoning and a good one, too. arXiv preprint arXiv:1108.3278.Google Scholar
Doyle, J., & McDermott, D. (1980). Nonmonotonic logic i. Artificial Intelligence, 13(1), 2.Google Scholar
Dubois, D., & Prade, H. (1990). An introduction to possibilistic and fuzzy logics. In Shafer, G. & Pearl, J. (Eds.), Readings in Uncertain Reasoning (pp. 742761). Morgan Kaufmann.Google Scholar
Dubois, D., & Prade, H. (1991). Possibilistic logic, preferential models, nonmonotonicity and related issues. In Proceedings Twelfth International Joint Conference on Artificial Intelligence, 419424.Google Scholar
Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artifical Intelligence, 77, 321358.CrossRefGoogle Scholar
Eagle, A. (2024). Probability and inductive logic. Cambridge University Press.Google Scholar
Eemeren, F., & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge University Press.Google Scholar
Eiter, T., Ianni, G., & Krennwallner, T. (2009). Answer set programming: A primer. Reasoning Web International Summer School, 40110.Google Scholar
Elio, R., & Pelletier, F. J. (1994). On relevance in non-monotonic reasoning: Some empirical studies. Relevance: American Association for Artificial Intelligence 1994 Fall Symposium Series, 6467.Google Scholar
Friedman, N., & Halpern, J. Y. (1996). Plausibility measures and default reasoning. Journal of the ACM, 48(4), 12971304.Google Scholar
Friedman, N., Halpern, J. Y., & Koller, D. (2000). First-order conditional logic for default reasoning revisited. ACM Transactions on Computational Logic, 1(2), 175207.CrossRefGoogle Scholar
Gabbay, D. M. (1985). Theoretical foundations for non-monotonic reasoning in expert systems. In Apt, K. R. (ed.), Logics and models of concurrent systems (pp. 439457). Springer.CrossRefGoogle Scholar
Gabbay, D., Giacomin, M., Guillermo, S., & Thimm, M. (Eds.). (2021). Handbook of formal argumentation. College Publications.Google Scholar
Gärdenfors, P. (1990). Belief revision and nonmonotonic logic: Two sides of the same coin? European Workshop on Logics in Artificial Intelligence, 5254.Google Scholar
Geffner, H. (1992). High-probabilities, model-preference and default arguments. Minds and Machines, 2, 5170.CrossRefGoogle Scholar
Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. ICLP/SLP, 88, 10701080.Google Scholar
Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3–4), 365385.CrossRefGoogle Scholar
Gelfond, M., Lifschitz, V., Przymusinska, H., & Truszczynski, M. (1991). Disjunctive defaults. Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, 230237.Google Scholar
Gelfond, M., Przymusinska, H., & Przymusinski, T. (1989). On the relationship between circumscription and negation as failure. Artificial Intelligence, 38(1), 7594.CrossRefGoogle Scholar
Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2009). Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Transactions on Computational Logic (TOCL), 10(3), 18.CrossRefGoogle Scholar
Goldszmidt, M., & Pearl, J. (1990). On the relation between rational closure and system Z. Third International Workshop on Nonmonotonic Reasoning (South Lake Tahoe), 130140.Google Scholar
Goldszmidt, M., & Pearl, J. (1992). Rank-based systems: A simple approach to belief revision, belief update, and reasoning about evidence and actions. Proceedings of the Third International Conference on Knowledge Representation and Reasoning, 661672.Google Scholar
Goldszmidt, M., Morris, P., & Pearl, J. (1993). A maximum entropy approach to nonmonotonic reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3), 220232.CrossRefGoogle Scholar
Haenni, R. (2009). Probabilistic argumentation [Special issue: Combining Probability and Logic]. Journal of Applied Logics, 7(2), 155176.CrossRefGoogle Scholar
Hansen, J. (2008). Prioritized conditional imperatives: Problems and a new proposal. Autonomous Agents and Multi-Agent Systems, 17(1), 1135.CrossRefGoogle Scholar
Hansson, B. (1969). An analysis of some deontic logics. Nous, 373398.CrossRefGoogle Scholar
Hart, H. L. (1948). The ascription of responsibility and rights. Proceedings of the Aristotelian Society, 49, 171194.CrossRefGoogle Scholar
Heyer, G. (1990). Semantics and knowledge representation in the analysis of generic descriptions. Journal of Semantics, 7(1), 93110.CrossRefGoogle Scholar
Heyninck, J., & Arieli, O. (2019). An argumentative characterization of disjunctive logic programming. EPIA Conference on Artificial Intelligence, 526538.Google Scholar
Heyninck, J., & Straßer, C. (2016). Relations between assumption-based approaches in nonmonotonic logic and formal argumentation. In Kern-Isberner, G. & Wassermann, R. (Eds.), Proceedings of NMR2016 (pp. 6576).Google Scholar
Heyninck, J., & Straßer, C. (2019). A fully rational argumentation system for preordered defeasible rules. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (pp. 17041712).Google Scholar
Heyninck, J., & Straßer, C. (2021a). A comparative study of assumption-based argumentative approaches to reasoning with priorities. Journal of Applied Logics – IfCoLog Journal of Logics and Their Applications, 8(3), 737808.Google Scholar
Heyninck, J., & Straßer, C. (2021b). Rationality and maximal consistent sets for a fragment of ASPIC+ without undercut. Argument & Computation, (1), 347.CrossRefGoogle Scholar
Hölldobler, S., & Kalinke, Y. (1994). Towards a new massible parallel computational model for logic programming. Proceedings of the Workshop on Combining Symbolic and Connectionist Processing ECCAI, 6877.Google Scholar
Horty, J. F. (2002). Skepticism and floating conclusions. Artificial Intelligence, 135(1–2), 5572.CrossRefGoogle Scholar
Horty, J. F. (2012). Reasons as defaults. Oxford University Press.CrossRefGoogle Scholar
Hunter, A., & Thimm, M. (2017). Probabilistic reasoning with abstract argumentation frameworks. Journal of Artificial Intelligence Research, 59, 565611.CrossRefGoogle Scholar
Kelly, K. T., & Lin, H. (2021). Beliefs, probabilities, and their coherent correspondence.Lotteries, Knowledge, and Rational Belief: Essays on the Lottery Paradox, (pp. 185222). Cambridge University Press.CrossRefGoogle Scholar
Konolige, K. (1988). On the relation between default and autoepistemic logic. Artificial Intelligence, 35(3), 343382.CrossRefGoogle Scholar
Koons, R. (2017). Defeasible Reasoning. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Winter 2017). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/entries/reasoning-defeasible/.Google Scholar
Kraus, S., Lehman, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167207.CrossRefGoogle Scholar
Kyburg, H. E. (2001). Real logic is nonmonotonic. Minds and Machines, 11(4), 577595.CrossRefGoogle Scholar
Lehmann, D. J. (1995). Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence, 15(1), 6182.CrossRefGoogle Scholar
Lehmann, D. J., & Magidor, M. (1990). Preferential logics: The predicate calculus case. Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, 5772.Google Scholar
Lehmann, D. J., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55(1), 160.CrossRefGoogle Scholar
Leitgeb, H. (2018). Neural network models of conditionals. In Introduction to formal philosophy (pp. 147176). Springer.CrossRefGoogle Scholar
Leslie, S.-J., & Lerner, A. (2022). Generic Generalizations. In Zalta, E. N. & Nodelman, U. (Eds.), The Stanford encyclopedia of philosophy (Fall 2022). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/entries/generics/.Google Scholar
Lewis, D. (1973). Counterfactuals. Harvard University Press.Google Scholar
Lewis, D. (1974). Semantic analyses for dyadic deontic logic. In Logical theory and semantic analysis: Essays dedicated to Stig Kanger on his fiftieth birthday (pp. 114). Springer.Google Scholar
Li, Z., Oren, N., & Parsons, S. (2018). On the links between argumentationbased reasoning and nonmonotonic reasoning. Lecture Notes in Computer Science vol. 10757 (pp. 6785). Springer.Google Scholar
Liao, B., Oren, N., van der Torre, L., & Villata, S. (2016). Prioritized norms and defaults in formal argumentation. Cariani, F., Grossi, D., Meheus, J., & Parent, Xavier (Eds.), Deontic Logic and Normative Systems. 12th International Conference, DEON 2014, Ghent, Belgium, July 12–15, 2014. Proceedings. Springer, pp. 139154.Google Scholar
Liao, B., Oren, N., van der Torre, L., & Villata, S. (2018). Prioritized norms in formal argumentation. Journal of Logic and Computation, 29(2), 215240.CrossRefGoogle Scholar
Lifschitz, V. (1989). Benchmark problems for formal nonmonotonic reasoning. In Reinfrank, M., de Kleer, J., Ginsberg, M. L., & Sandewall, E. (Eds.), Non-Monotonic Reasoning, Lecture Notes in Computer Science, vol. 346. Springer, 202219.CrossRefGoogle Scholar
Lifschitz, V. (2019). Answer set programming. Springer.CrossRefGoogle Scholar
Lin, F., & Shoham, Y. (1990). Epistemic semantics for fixed-points non-monotonic logics. Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, 111120.Google Scholar
Loui, R. P. (1995). Hart’s critics on defeasible concepts and ascriptivism. Proceedings of the 5th International Conference on Artificial Intelligence and Law, 2130.Google Scholar
Łukaszewicz, W. (1988). Considerations on default logic: An alternative approach. Computational Intelligence, 4(1), 116.CrossRefGoogle Scholar
Makinson, D. (2003). Bridges between classical and nonmonotonic logic. Logic Journal of IGPL, 11(1), 6996.CrossRefGoogle Scholar
Makinson, D. (2005). Bridges from classical to nonmonotonic logic (Vol. 5). King’s College Publications.Google Scholar
Makinson, D., & Van Der Torre, L. (2000). Input/Output logics. Journal of Philosophical Logic, 29, 383408.CrossRefGoogle Scholar
Makinson, D., & Van Der Torre, L. (2001). Constraints for Input/Output logics. Journal of Philosophical Logic, 30(2), 155185.CrossRefGoogle Scholar
Manhaeve, R., Dumanéiæ, S., Kimmig, A., Demeester, T., & De Raedt, L. (2021). Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298, 103504.CrossRefGoogle Scholar
McCarthy, J. (1980). Circumscription: A form of non-monotonic reasoning. Artificial Intelligence, 13, 2729.CrossRefGoogle Scholar
Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), 5774.CrossRefGoogle ScholarPubMed
Mercier, H., & Sperber, D. (2017). The enigma of reason. Harvard University Press.Google Scholar
Minker, J. (1994). Overview of disjunctive logic programming. Annals of Mathematics and Artificial Intelligence, 12(1), 124.CrossRefGoogle Scholar
Modgil, S., & Prakken, H. (2013). A general account of argumentation with preferences. Artificial Intelligence, 195, 361397.CrossRefGoogle Scholar
Modgil, S., & Prakken, H. (2014). The ASPIC+framework for structured argumentation: A tutorial. Argument & Computation, 5(1), 3162.CrossRefGoogle Scholar
Moinard, Y., & Rolland, R. (1998). Propositional circumscriptions [research report]. INRIA-00073147. https://inria.hal.science/inria-00073147.Google Scholar
Moretti, L., & Piazza, T. (2017). Defeaters in current epistemology: Introduction to the special issue. Synthese, 195(7), 28452854.CrossRefGoogle Scholar
Ng, R., & Subrahmanian, V. S. (1992). Probabilistic logic programming. Information and Computation, 101(2), 150201.CrossRefGoogle Scholar
Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., & Barry, M. (2001). An a-prolog decision support system for the space shuttle. Proceedings of the Third International Symposium on Practical Aspects of Declarative Languages, 169183.Google Scholar
Parent, X., & van der Torre, L. (2013). Input/output logic. In Gabbay, D., Horty, J., Parent, X., van der Meyden, R., & van der Torre, L. (Eds.), Handbook of deontic logic (pp. 499544, Vol. 1). College Publications.Google Scholar
Pearl, J. (1989). Probabilistic semantics for nonmonotonic reasoning: A survey. Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning, 505516.Google Scholar
Pearl, J. (1990). System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. TARK ’90: Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, 121135.Google Scholar
Pelletier, F. J., & Elio, R. (1997). What should default reasoning be, by default? Computational Intelligence, 13(2), 165187.CrossRefGoogle Scholar
Perelman, C., & Olbrechts-Tyteca, L. (1969, June). The new rhetoric: A treatise on argumentation. University of Notre Dame Press.Google Scholar
Pfeifer, N., & Kleiter, G. D. (2005). Coherence and nonmonotonicity in human reasoning. Synthese, 146(1–2), 93109.CrossRefGoogle Scholar
Pollock, J. (1991). A theory of defeasible reasoning. International Journal of Intelligent Systems, 6, 3354.CrossRefGoogle Scholar
Pollock, J. (1995). Cognitive carpentry. Bradford/MIT Press.CrossRefGoogle Scholar
Poole, D. (1985). On the comparison of theories: Preferring the most specific explanation. IJCAI, 85, 144147.Google Scholar
Poole, D. (1988). A logical framework for default reasoning. Artificial Intelligence, 36(1), 2747.CrossRefGoogle Scholar
Poole, D. (1991). The effect of knowledge on belief: Conditioning, specificity and the lottery paradox in default reasoning. Artificial Intelligence, 49(1–3), 281307.CrossRefGoogle Scholar
Prakken, H. (2012). Some reflections on two current trends in formal argumentation. Logic Programs, Norms and Action, 249272.CrossRefGoogle Scholar
Przymusinski, T. C. (1990). The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae, 13(4), 445463.CrossRefGoogle Scholar
Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 12(13).CrossRefGoogle Scholar
Reiter, R. (1981). On closed world data bases. In Readings in artificial intelligence (pp. 119140). Elsevier.CrossRefGoogle Scholar
Reiter, R., & Criscuolo, G. (1981). On interacting defaults. IJCAI, 81, 270276.Google Scholar
Rescher, N. (1976). Plausible reasoning: An introduction to the theory and practice of plausibilistic inference. Van Gorcum.Google Scholar
Rescher, N., & Manor, R. (1970). On inference from inconsistent premises. Theory and Decision, 1, 179217.CrossRefGoogle Scholar
Ross, W. D. (1930). The right and the good. Oxford University Press.Google Scholar
Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Clarendon Press.CrossRefGoogle Scholar
Saldanha, E.-A. D. (2018). From logic programming to human reasoning: How to be artificially human. KI – Künstliche Intelligenz, 32(4), 283286.CrossRefGoogle Scholar
Satoh, K. (1989). A probabilistic interpretation for lazy nonmonotonic reasoning. Institute for New Generation Computer Technology.Google Scholar
Schaub, T., & Wang, K. (2001). A comparative study of logic programs with preference. IJCAI, 597602.Google Scholar
Schulz, C., & Toni, F. (2016). Justifying answer sets using argumentation. Theory and Practice of Logic Programming, 16(1), 59110.CrossRefGoogle Scholar
Schurz, G. (2005). Non-monotonic reasoning from an evolution-theoretic perspective: Ontic, logical and cognitive foundations. Synthese, 146(1–2), 3751.CrossRefGoogle Scholar
Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., & Cory, H. T. (1986). The British Nationality Act as a logic program. Communications of the ACM, 29(5), 370386.CrossRefGoogle Scholar
Shoham, Y. (1987). A semantical approach to nonmonotonic logics. In Ginsberg, M. L. (Ed.), Readings in non-monotonic reasoning (pp. 227249). Morgan Kaufmann.Google Scholar
Spohn, W. (1988, August). Ordinal conditional functions: A dynamic theory of epistemic states. In Harper, W. L. & Skyrms, B. (Eds.), Causation in decision, belief change and statistics (pp. 105134). Springer.CrossRefGoogle Scholar
Stalnaker, R. (1994). What is a nonmonotonic consequence relation? Fundamenta Informaticae, 21(1), 721.CrossRefGoogle Scholar
Stalnaker, R. F. (1968). A theory of conditionals. In Reischer, N. (Ed.), Studies in logical theory. Basil Blackwell.Google Scholar
Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and cognitive science. MIT Press.CrossRefGoogle Scholar
Straßer, C. (2009a). An adaptive logic for rational closure. The many sides of logic, 4767.Google Scholar
Straßer, C. (2009b). The many sides of logic. In Carnielli, M. E. C. Walter & D’Ottaviano, I. M. L. (Eds.). College Publications.Google Scholar
Straßer, C. (2014). Adaptive logic and defeasible reasoning: Applications in argumentation, normative reasoning and default reasoning. (Trends in Logic Vol. 38). Springer.Google Scholar
Straßer, C., Beirlaen, M., & Van De Putte, F. (2016). Adaptive logic characterizations of input/output logic. Studia Logica, 104(5), 869916.CrossRefGoogle Scholar
Straßer, C., & Michajlova, L. (2023). Evaluating and selecting arguments in the context of higher order uncertainty. Frontiers in Artificial Intelligence, 6, 1133998.CrossRefGoogle ScholarPubMed
Straßer, C., & Pardo, P. (2021). Prioritized defaults and formal argumentation. In Liu, F., Marra, A., Portner, P., & Van de Putte, F. (Eds.), Proceedings of DEON2020/2021 (pp. 427446). College Publications.Google Scholar
Straßer, C., & Seselja, D. (2010). Towards the proof-theoretic unification of Dung’s argumentation framework: An adaptive logic approach. Journal of Logic and Computation, 21(2), 133156.CrossRefGoogle Scholar
Sudduth, M. (2017). Defeaters in epistemology. In Fieser, F. & Dowden, B. (Eds.), Internet encyclopedia of philosophy. https://iep.utm.edu/defeaters-in-epistemology/.Google Scholar
Tessler, M. H., & Goodman, N. D. (2019). The language of generalization. Psychological Review, 126(3), 395.CrossRefGoogle ScholarPubMed
Toni, F. (2014). A tutorial on assumption-based argumentation. Argument & Computation, 5(1), 89117.CrossRefGoogle Scholar
Toulmin, S. E. (1958). The Uses of Argument. Cambridge University Press.Google Scholar
van Berkel, K., & Straßer, C. (2022). Reasoning with and about norms in logical argumentation. In Toni, F., Polberg, S., Booth, R., Caminada, M., & Kido, H. (Eds.), Frontiers in artificial intelligence and applications: Computational models of argument, proceedings (COMMA22) (pp. 332343, Vol. 353). IOS Press.Google Scholar
Van De Putte, F. (2013). Default assumptions and selection functions: A generic framework for non-monotonic logics. In Advances in artificial intelligence and its applications. Lecture Notes in Computer Science, vol. 8265 (pp. 5467). Springer.CrossRefGoogle Scholar
Van De Putte, F., Beirlaen, M., & Meheus, J. (2019). Adaptive deontic logics. Handbook of Deontic Logic and Normative Systems, 2, 367459. College Publications.Google Scholar
Van Fraassen, B. C. (1972). The logic of conditional obligation. Journal of Philosophical Logic, 1, 417438.CrossRefGoogle Scholar
Vesic, S. (2013). Identifying the class of maxi-consistent operators in argumentation. Journal of Artificial Intelligence Research, 47, 7193.CrossRefGoogle Scholar
Vreeswijk, G. A. W. (1993). Studies in defeasible argumentation [Doctoral dissertation, Free University Amsterdam. Department of Computer Science].Google Scholar
Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge University Press.CrossRefGoogle Scholar
Young, A. P., Modgil, S., & Rodrigues, O. (2016). Prioritised default logic as rational argumentation. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, 626634.Google Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this Element is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nonmonotonic Logic
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Nonmonotonic Logic
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Nonmonotonic Logic
Available formats
×