Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-t7hbd Total loading time: 1.389 Render date: 2022-05-18T16:49:08.497Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics

Published online by Cambridge University Press:  28 May 2018

Vincenzo Pecunia
Affiliation:
Soochow University, China
Marco Fattori
Affiliation:
Eindhoven University of Technology
Sahel Abdinia
Affiliation:
Eindhoven University of Technology
Henning Sirringhaus
Affiliation:
University of Cambridge
Eugenio Cantatore
Affiliation:
Eindhoven University of Technology

Summary

Recent years have witnessed significant research efforts in flexible organic and amorphous-metal-oxide analogue electronics, in view of its formidable potential for applications such as smart sensor systems. This Element provides a comprehensive overview of this growing research area. After discussing the properties of organic and amorphous-metal-oxide technologies relevant to analogue circuits, this Element focuses on their application to two key circuit blocks: amplifiers and analogue-to-digital converters. The Element thus provides a fresh look at the evolution and immediate opportunities of the field, and identifies the remaining challenges for these technologies to become the platform of choice for flexible analogue electronics.
Get access
Type
Element
Information
Online ISBN: 9781108559034
Publisher: Cambridge University Press
Print publication: 17 May 2018
Copyright
© Vincenzo Pecunia, Marco Fattori, Sahel Abdinia, Henning Sirringhaus and Eugenio Cantatore 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kane, M. G., Campi, J., Hammond, M. S., Cuomo, F. P., Greening, B., Sheraw, C. D., Nichols, J. A., Gundlach, D. J, Huang, J. R, Kuo, C. C, Jia, L., Klauk, H and Jackson, T. N., ‘Analog and digital circuits using organic thin-film transistors on polyester substrates’, IEEE Electron Device Lett., vol. 21, no. 11, pp. 534536, 2000.
[2]Gay, N., Fischer, W. J., Halik, M., Klauk, H., Zschieschang, U. and Schmid, G., ‘Analog signal processing with organic FETs’, in 2006 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2006, pp. 10701079.
[3]Marien, H., Steyaert, M., van Veenendaal, E. and Heremans, P., ‘Analog techniques for reliable organic circuit design on foil applied to an 18 dB single-stage differential amplifier’, Org. Electron., vol. 11, no. 8, pp. 13571362, 2010.
[4]Marien, H., Steyaert, M. S. J., van Veenendaal, E. and Heremans, P., ‘Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 17121720, 2012.
[5]Marien, H., Steyaert, M., van Aerle, N. and Heremans, P., ‘An analog organic first-order CT DELTA SIGMA ADC on a flexible plastic substrate with 26.5dB precision’, in 2010 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2010, pp. 136137.
[6]Tai, Y. H., Chiu, H. L., Chou, L. S. and Chang, C. H., ‘Boosted gain of the differential amplifier using the second gate of the dual-gate a-IGZO TFTs’, IEEE Electron Device Lett., vol. 33, no. 12, pp. 17291731, 2012.
[7]Maiellaro, G., Ragonese, E., Castorina, A., Jacob, S., Benwadih, M., Coppard, R. and Cantatore, E., ‘High-gain operational transconductance amplifiers in a printed complementary organic TFT technology on flexible foil’, IEEE Trans. Circuits Syst., vol. 60, no. 12, pp. 31173125, 2013.
[8]Pecunia, V., Nikolka, M., Sou, A., Nasrallah, I., Amin, A. Y., McCulloch, I. and Sirringhaus, H., ‘Trap healing for high-performance low-voltage polymer transistors and solution-based analog amplifiers on foil’, Adv. Mater., vol. 29, no. 23, p. 1606938, Jun. 2017.
[9]Garripoli, C., van der Steen, J.-L. P. J., Smits, E., Gelinck, G. H., van Roermund, A. H. M. and Cantatore, E., ‘15.3 An a-IGZO asynchronous delta-sigma modulator on foil achieving up to 43dB SNR and 40dB SNDR in 300Hz bandwidth’, in 2017 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2017, pp. 260261.
[10]Marien, M., Steyaert, M. and Heremans, P., Analog Organic Electronics. New York, NY: Springer, 2013.
[11]Raiteri, D., Cantatore, E. and van Roermund, A. H. M., Circuit Design on Plastic Foils. Cham: Springer International Publishing, 2015.
[12]Abdinia, S., van Roermund, A. and Cantatore, E., Design of Organic Complementary Circuits and Systems on Foil. Cham: Springer International Publishing, 2015.
[13]Sun, H., Xu, Y. and Noh, Y., ‘Flexible organic amplifiers’, IEEE Trans. Electron Devices, vol. 64, pp. 19441954, 2017.
[14]Huijsing, J. H., ‘Smart sensor systems: Why? Where? How?’, in Smart Sensor Systems, G. C. M. Meijer, Ed. Chichester, UK: John Wiley & Sons, Ltd, 2008, pp. 121.
[15]Geng, H., Ed., Internet of Things and Data Analytics Handbook. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017.
[16]Chaouchi, H., ‘Introduction to the Internet of Things’, in The Internet of Things, H. Chaouchi, Ed. London, UK: ISTE Ltd and Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010, pp. 133.
[17]Jansen-van Vuuren, R. D., Armin, A., Pandey, A. K., Burn, P. L. and Meredith, P., ‘Organic photodiodes: The future of full color detection and image sensing’, Adv. Mater., vol. 28, no. 24, pp. 47664802, Jun. 2016.
[18]Pierre, A. and Arias, A. C., ‘Solution-processed image sensors on flexible substrates’, Flex. Print. Electron., vol. 1, no. 4, p.43001, Dec. 2016.
[19]Pace, G., Grimoldi, A., Sampietro, M., Natali, D. and Caironi, M., ‘Printed photodetectors’, Semicond. Sci. Technol., vol. 30, no. 10, p. 104006, Oct. 2015.
[20]Li, T., Li, L., Sun, H., Xu, Y., Wang, X., Luo, H., Liu, Z. and Zhang, T., ‘Porous ionic membrane based flexible humidity sensor and its multifunctional applications’, Adv. Sci., vol. 4, no. 5, p. 1600404, May 2017.
[21]Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., Harris, N., Kivioja, J. and Ryhänen, T., ‘Ultrafast graphene oxide humidity sensors’, ACS Nano, vol. 7, no. 12, pp. 1116611173, 2013.
[22]Kano, S., Kim, K. and Fujii, M., ‘Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin’, ACS Sensors, vol. 2, no. 6, pp. 828833, Jun. 2017.
[23]Yokota, T., Inoue, Y., Terakawa, Y., Reeder, J., Kaltenbrunner, M., Ware, T., Yang, K., Mabuchi, K., Murakawa, T., Sekino, M., Voit, W., Sekitani, T. and Someya, T., ‘Ultraflexible, large-area, physiological temperature sensors for multipoint measurements’, Proc. Natl. Acad. Sci., vol. 112, no. 47, pp. 1453314538, Nov. 2015.
[24]Ren, X., Pei, K., Peng, B., Zhang, Z., Wang, Z., Wang, X. and Chan, P. K. L., ‘A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array’, Adv. Mater., vol. 28, no. 24, pp. 48324838, Jun. 2016.
[25]Trung, T. Q. and Lee, N.-E., ‘Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare’, Adv. Mater., vol. 28, no. 22, pp. 43384372, Jun. 2016.
[26]Yan, C., Wang, J. and Lee, P. S., ‘Stretchable graphene thermistor with tunable thermal index’, ACS Nano, vol. 9, no. 2, pp. 21302137, Feb. 2015.
[27]Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S. and Someya, T., ‘An ultra-lightweight design for imperceptible plastic electronics’, Nature, vol. 499, no. 7459, pp.458463, 2013.
[28]Schwartz, G., Tee, B. C.-K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H. and Bao, Z., ‘Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring’, Nat. Commun., vol. 4, no. 1859, May 2013.
[29]Lee, W., Koo, H., Sun, J., Noh, J., Kwon, K.-S., Yeom, C., Choi, Y., Chen, K., Javey, A. and Cho, G., ‘A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors’, Sci. Rep., vol. 5, p. 17707, Dec. 2015.
[30]Zhang, C., Chen, P. and Hu, W., ‘Organic field-effect transistor-based gas sensors’, Chem. Soc. Rev., vol. 44, no. 8, pp. 20872107, 2015.
[31]Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., Hu, N., Yin, G., He, D. and Zhang, L., ‘A review on graphene-based gas/vapor sensors with unique properties and potential applications’, Nano-Micro Lett., vol. 8, no. 2, pp. 95119, 2016.
[32]Wang, T., Guo, Y., Wan, P., Zhang, H., Chen, X. and Sun, X., ‘Flexible transparent electronic gas sensors’, Small, vol. 12, no. 28, pp. 37483756, 2016.
[33]Kim, Y. H., Kim, S. J., Kim, Y.-J., Shim, Y.-S., Kim, S. Y., Hong, B. H. and Jang, H. W., ‘Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending’, ACS Nano, vol. 9, no. 10, pp. 1045310460, Oct. 2015.
[34]Magliulo, M., Mulla, M. Y., Singh, M., Macchia, E., Tiwari, A., Torsi, L. and Manoli, K., ‘Printable and flexible electronics: From TFTs to bioelectronic devices’, J. Mater. Chem. C, vol. 3, no. 48, pp. 1234712363, 2015.
[35]Liao, C., Zhang, M., Yao, M. Y., Hua, T., Li, L. and Yan, F., ‘Flexible organic electronics in biology: Materials and devices’, Adv. Mater., vol. 27, no. 46, pp. 74937527, Dec. 2015.
[36]Khodagholy, D., Gelinas, J. N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G. G. and Buzsáki, G.,‘NeuroGrid: Recording action potentials from the surface of the brain’, Nat. Neurosci., vol. 18, no. 2, pp. 310315, Dec. 2014.
[37]Lochner, C. M., Khan, Y., Pierre, A. and Arias, A. C., ‘All-organic optoelectronic sensor for pulse oximetry’, Nat. Commun., vol. 5, no. 5745, Dec. 2014.
[38]Takahashi, T., Yu, Z., Chen, K., Kiriya, D., Wang, C., Takei, K., Shiraki, H., Chen, T., Ma, B. and Javey, A., ‘Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers’, Nano Lett., vol. 13, no. 11, pp. 54255430, Nov. 2013.
[39]Horowitz, G., Hajlaoui, R., Bourguiga, R. and Hajlaoui, M., ‘Theory of the organic field-effect transistor’, Synth. Met., vol. 101, no. 1–3, pp. 401404, May 1999.
[40]Marinov, O., Deen, M. J., Zschieschang, U. and Klauk, H., ‘Organic thin-film transistors: Part I-compact DC modeling’, IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 29522961, 2009.
[41]Servati, P., Striakhilev, D. and Nathan, A., ‘Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors’, IEEE Trans. Electron Devices, vol. 50, no. 11, pp. 22272235, Nov. 2003.
[42]Heremans, P., Tripathi, A. K., Jamblinne de Meux, A. de, Smits, E. C. P, Hou, B, Pourtois, G and Gelinck, G. H., ‘Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications’, Adv. Mater., vol. 28, no. 22, pp. 42664282, 2016.
[43]Gleskova, H., Wagner, S. and Suo, Z., ‘Failure resistance of amorphous silicon transistors under extreme in-plane strain’, Appl. Phys. Lett., vol. 75, no. 19, pp. 30113013, Nov. 1999.
[44]Silveira, F., Flandre, D. and Jespers, P. G. A., ‘A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA’, IEEE J. Solid-State Circuits, vol. 31, no. 9, pp. 13141319, 1996.
[45]Murmann, B. and Xiong, W. X. W., ‘Design of analog circuits using organic field-effect transistors’, in 2010 IEEE/ACM Int. Conf. Comput.-Aided Des., San Jose, CA, USA, 2010, pp. 504507.
[46]Sirringhaus, H., ‘25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon’, Adv. Mater., vol. 26, no. 9, pp. 13191335, Mar. 2014.
[47]Yu, X., Marks, T. J. and Facchetti, A., ‘Metal oxides for optoelectronic applications’, Nat. Mater., vol. 15, no. 4, pp. 383396, 2016.
[48]Yeon Kwon, J. and Kyeong Jeong, J., ‘Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors’, Semicond. Sci. Technol., vol. 30, no. 2, p. 24002, 2015.
[49]Zhao, Y., Guo, Y. and Liu, Y., ‘25th anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors’, Adv. Mater., vol. 25, no. 38, pp. 53725391, Oct. 2013.
[50]Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H, Janssen, R. A. J., Meijer, E. W, Herwig, P. and de Leeuw, D. M, ‘Two-dimensional charge transport in self-organized, high-mobility conjugated polymers’, Nature, vol. 401, no. 6754, pp. 685688, 1999.
[51]McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., Macdonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M. L., Kline, R. J., McGehee, M. D. and Toney, M. F., ‘Liquid-crystalline semiconducting polymers with high charge-carrier mobility’, Nat. Mater., vol. 5, no. 4, pp. 328333, Apr. 2006.
[52]Nielsen, C. B., Turbiez, M. and McCulloch, I., ‘Recent advances in the development of semiconducting DPP-containing polymers for transistor applications’, Adv. Mater., vol. 25, no. 13, pp. 18591880, 2013.
[53]Kim, G., Kang, S. J., Dutta, G. K., Han, Y. K., Shin, T. J., Noh, Y. Y. and Yang, C., ‘A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors’, J. Am. Chem. Soc., vol. 136, no. 26, pp. 94779483, 2014.
[54]Zhao, Y., Guo, Y. and Liu, Y., ‘25th anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors’, Adv. Mater., vol. 25, no. 38, pp. 53725391, 2013.
[55]Rivnay, J., Toney, M. F., Zheng, Y., Kauvar, I. V., Chen, Z., Wagner, V., Facchetti, A. and Salleo, A., ‘Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer’, Adv. Mater., vol. 22, no. 39, pp. 43594363, 2010.
[56]Hosono, H., ‘Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application’, J. Non. Cryst. Solids, vol. 352, no. 9–20, pp. 851858, Jun. 2006.
[57]Kamiya, T., Nomura, K. and Hosono, H., ‘Electronic structure of the amorphous oxide semiconductor a-InGaZnO4-x: Tauc-Lorentz optical model and origins of subgap states’, Phys. Status Solidi, vol. 206, no. 5, pp. 860867, May 2009.
[58]Wang, Z., Nayak, P. K., Caraveo-Frescas, J. A. and Alshareef, H. N., ‘Recent developments in p-type oxide semiconductor materials and devices’, Adv. Mater., vol. 28, no. 20, pp. 38313892, May 2016.
[59]Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M. and Hosono, H., ‘Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors’, Nature, vol. 432, no. 7016, pp. 488492, Nov. 2004.
[60]Brotherton, S. D., Introduction to Thin Film Transistors. Cham, Switzerland: Springer, 2013.
[61]Nikolka, M., Nasrallah, I., Rose, B., Ravva, M. K., Broch, K., Sadhanala, A., Harkin, D., Charmet, J., Hurhangee, M., Brown, A., Illig, S., Too, P., Jongman, J., McCulloch, I., Bredas, J.-L. and Sirringhaus, H., ‘High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives’, Nat. Mater., vol. 16, no. 3, pp. 356–362, 2017.
[62]Tai, Y. H., Chang, C. Y., Hsieh, C. L., Yang, Y. H., Chao, W. K. and Chen, H. E., ‘Dependence of the noise behavior on the drain current for thin film transistors’, IEEE Electron Device Lett., vol. 35, no. 2, pp. 229231, 2014.
[63]Su, L.-Y., Lin, H.-K., Hung, C.-C. and Huang, J., ‘Role of HfO2/SiO2 gate dielectric on the reduction of low-frequent noise and the enhancement of a-IGZO TFT electrical performance’, J. Disp. Technol., vol. 8, no. 12, pp. 695698, Dec. 2012.
[64]Fung, T.-C., Baek, G. and Kanicki, J., ‘Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors’, J. Appl. Phys., vol. 108, no. 7, p. 74518, Oct. 2010.
[65]Jurchescu, O. D., Hamadani, B. H., Xiong, H. D., Park, S. K., Subramanian, S., Zimmerman, N. M., Anthony, J. E., Jackson, T. N. and Gundlach, D. J., ‘Correlation between microstructure, electronic properties and flicker noise in organic thin film transistors’, Appl. Phys. Lett., vol. 92, no. 13, pp. 14, 2008.
[66]Jia, Z., Meric, I., Shepard, K. L. and Kymissis, I., ‘Doping and illumination dependence of 1/f noise in pentacene thin-film transistors’, IEEE Electron Device Lett., vol. 31, no. 9, pp. 10501052, 2010.
[67]Deng, L. F., Liu, Y. R., Choi, H. W., Che, C. M. and Lai, P. T., ‘Improved performance of pentacene OTFTs with HfLaO gate dielectric by using fluorination and nitridation’, IEEE Trans. Device Mater. Reliab., vol. 12, no. 2, pp. 520528, 2012.
[68]Street, R. A., Ed., Technology and Applications of Amorphous Silicon, vol. 37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
[69]Wager, J. F., Yeh, B., Hoffman, R. L. and Keszler, D. A., ‘An amorphous oxide semiconductor thin-film transistor route to oxide electronics’, Curr. Opin. Solid State Mater. Sci., vol. 18, no. 2, pp. 5361, 2014.
[70]Kheradmand-Boroujeni, B., Schmidt, G. C., Höft, D., Shabanpour, R., Perumal, C., Meister, T., Ishida, K., Carta, C., Hübler, A. C. and Ellinger, F., ‘Analog characteristics of fully printed flexible organic transistors fabricated with low-cost mass-printing techniques’, IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 14231430, 2014.
[71]Kheradmand-Boroujeni, B., Schmidt, G. C., Höft, D., Haase, K., Bellmann, M., Ishida, K., Shabanpour, R., Meister, T., Carta, C., Hübler, A. C. and Ellinger, F., ‘Small-signal characteristics of fully-printed high-current flexible all-polymer three-layer-dielectric transistors’, Org. Electron., vol. 34, pp. 267275, 2016.
[72]Bahubalindruni, P. G., Kiazadeh, A., Sacchetti, A., Martins, J., Rovisco, A., Tavares, V. G., Martins, R., Fortunato, E. and Barquinha, P., ‘Influence of channel length scaling on InGaZnO TFTs characteristics: Unity current-gain cutoff frequency, intrinsic voltage-gain, and on-resistance’, J. Disp. Technol., vol. 12, no. 6, pp. 515518, Jun. 2016.
[73]Pekarik, J., Greenberg, D., Jagannathan, B., Groves, R., Jones, J. R., Singh, R., Chinthakindi, A., Wang, X., Breitwisch, M., Coolbaugh, D., Cottrell, P., Florkey, J., Freeman, G. and Krishnasamy, R., ‘RFCMOS technology from 0.25μm to 65nm: The state of the art’, in IEEE 2004 Custom Integr. Circuits Conf., Orlando, FL, USA, 2004, pp. 217224.
[74]Robertson, J. and Falabretti, B., ‘Band offsets of high K gate oxides on high mobility semiconductors’, Mater. Sci. Eng. B, vol. 135, no. 3, pp. 267271, Dec. 2006.
[75]Chen, F.-C., Chu, C.-W., He, J., Yang, Y. and Lin, J.-L., ‘Organic thin-film transistors with nanocomposite dielectric gate insulator’, Appl. Phys. Lett., vol. 85, no. 15, p. 3295, 2004.
[76]Jung, C., Maliakal, A., Sidorenko, A. and Siegrist, T., ‘Pentacene-based thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: High mobility on high K dielectric films’, Appl. Phys. Lett., vol. 90, no. 6, p. 62111, 2007.
[77]Kim, P., Zhang, X.-H., Domercq, B., Jones, S. C., Hotchkiss, P. J., Marder, S. R., Kippelen, B. and Perry, J. W., ‘Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors’, Appl. Phys. Lett., vol. 93, p. 13302, 2008.
[78]Schroeder, R., Majewski, L. A. and Grell, M., ‘High-performance organic transistors using solution-processed nanoparticle-filled high-k polymer gate insulators’, Adv. Mater., vol. 17, no. 12, pp. 15351539, Jun. 2005.
[79]Chen, Q., Ren, K., Chu, B., Liu, Y., Zhang, Q. M., Bobnar, V. and Levstik, A., ‘Relaxor ferroelectric polymers – fundamentals and applications’, Ferroelectrics, vol. 354, no. 1, pp. 178191, Aug. 2007.
[80]Peacock, P. W. and Robertson, J., ‘Band offsets and Schottky barrier heights of high dielectric constant oxides’, J. Appl. Phys., vol. 92, no. 8, p. 4712, 2002.
[81]Pecunia, V., Banger, K. and Sirringhaus, H., ‘High-performance solution-processed amorphous-oxide-semiconductor TFTs with organic polymeric gate dielectrics’, Adv. Electron. Mater., vol. 1, no. 1–2, Feb. 2015.
[82]Chua, L.-L., Ho, P. K. H., Sirringhaus, H. and Friend, R. H., ‘High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors’, Appl. Phys. Lett., vol. 84, no. 17, p. 3400, 2004.
[83]Noh, Y. and Sirringhaus, H., ‘Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors’, Org. Electron., vol. 10, no. 1, pp. 174180, Feb. 2009.
[84]Li, J., Liu, D., Miao, Q. and Yan, F., ‘The application of a high-k polymer in flexible low-voltage organic thin-film transistors’, J. Mater. Chem., vol. 22, no. 31, p. 15998, 2012.
[85]Cho, J. H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M. J., Lodge, T. P. and Frisbie, C. D., ‘Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic’, Nat. Mater., vol. 7, no. 11, pp. 900906, Nov. 2008.
[86]Cho, I.-T., Lee, J.-M., Lee, J.-H. and Kwon, H.-I., ‘Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses’, Semicond. Sci. Technol., vol. 24, no. 1, p. 15013, Jan. 2009.
[87]Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M. and Stellacci, F., ‘Low-voltage organic transistors with an amorphous molecular gate dielectric’, Nature, vol. 431, no. 7011, pp. 963–966, 2004.
[88]Klauk, H., Zschieschang, U., Pflaum, J. and Halik, M., ‘Ultralow-power organic complementary circuits’, Nature, vol. 445, no. 7129, pp. 745748, Feb. 2007.
[89]Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. and Mohialdin Khaffaf, S., ‘Low-k insulators as the choice of dielectrics in organic field-effect transistors’, Adv. Funct. Mater., vol. 13, no. 3, pp. 199204, Mar. 2003.
[90]Hulea, I. N., Fratini, S., Xie, H., Mulder, C. L., Iossad, N. N., Rastelli, G., Ciuchi, S. and Morpurgo, A. F., ‘Tunable Fröhlich polarons in organic single-crystal transistors’, Nat. Mater., vol. 5, no. 12, pp. 982986, Dec. 2006.
[91]Fukuda, K., Takeda, Y., Yoshimura, Y., Shiwaku, R., Tran, L. T., Sekine, T., Mizukami, M., Kumaki, D. and Tokito, S., ‘Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films’, Nat. Commun., vol. 5, no. 4147, Jun. 2014.
[92]Nawrocki, R. A., Matsuhisa, N., Yokota, T. and Someya, T., ‘300-nm imperceptible, ultraflexible, and biocompatible e-skin fit with tactile sensors and organic transistors’, Adv. Electron. Mater., vol. 2, no. 4, p. 1500452, Apr. 2016.
[93]Hsieh, H.-H. and Wu, C.-C., ‘Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes’, Appl. Phys. Lett., vol. 91, no. 1, p. 13502, 2007.
[94]Wang, Y.-L., Covert, L. N., Anderson, T. J., Lim, W., Lin, J., Pearton, S. J., Norton, D. P., Zavada, J. M. and Ren, F., ‘RF characteristics of room-temperature-deposited, small gate dimension indium zinc oxide TFTs’, Electrochem. Solid-State Lett., vol. 11, no. 3, p. H60-H62, 2008.
[95]Yu, M.-J., Yeh, Y.-H., Cheng, C.-C., Lin, C.-Y., Ho, G.-T., Lai, B. C.-M., Leu, C.-M., Hou, T.-H. and Chan, Y.-J., ‘Amorphous InGaZnO thin-film transistors compatible with roll-to-roll fabrication at room temperature’, IEEE Electron Device Lett., vol. 33, no. 1, pp. 4749, Jan. 2012.
[96]Zhou, F., Lin, H. P., Zhang, L., Li, J., Zhang, X. W., Yu, D. B., Jiang, X. Y. and Zhang, Z. L., ‘Top-gate amorphous IGZO thin-film transistors with a SiO buffer layer inserted between active channel layer and gate insulator’, Curr. Appl. Phys., vol. 12, no. 1, pp. 228232, Jan. 2012.
[97]Park, S.-H. K., Hwang, C.-S., Jeong, H. Y., Chu, H. Y. and Cho, K. I., ‘Transparent ZnO-TFT arrays fabricated by atomic layer deposition’, Electrochem. Solid-State Lett., vol. 11, no. 1, p. H10-H14, 2008.
[98]Poodt, P., Knaapen, R., Illiberi, A., Roozeboom, F. and van Asten, A., ‘Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics’, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 1, p. 01A142, 2012.
[99]Potts, S. E., Profijt, H. B., Roelofs, R. and Kessels, W. M. M., ‘Room-temperature ALD of metal oxide thin films by energy-enhanced ALD’, Chem. Vap. Depos., vol. 19, no. 4–6, pp. 125133, Jun. 2013.
[100]Lin, J., ‘Printing processes and equipments’, in Printed Electronics, Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016, pp. 106144.CrossRefGoogle Scholar
[101]Khan, S., Lorenzelli, L. and Dahiya, R. S., ‘Technologies for printing sensors and electronics over large flexible substrates: A review’, IEEE Sens. J., vol. 15, no. 6, pp. 31643185, 2015.CrossRefGoogle Scholar
[102]Burns, S. E., Cain, P., Mills, J., Wang, J. and Sirringhaus, H., ‘Inkjet printing of polymer thin-film transistor circuits’, MRS Bull., vol. 28, no. 11, pp. 829834, Nov. 2003.CrossRefGoogle Scholar
[103]Raiteri, D., van Lieshout, P., van Roermund, A. and Cantatore, E., ‘Positive-feedback level shifter logic for large-area electronics’, IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 524535, Feb. 2014.CrossRefGoogle Scholar
[104]Arai, T. and Shiraishi, Y., ‘56.1: Invited paper: Manufacturing issues for oxide TFT technologies for large-sized AMOLED displays’, SID Symp. Dig. Tech. Pap., vol. 43, no. 1, pp. 756759, 2012.CrossRefGoogle Scholar
[105]Complementary Organic Semiconductor and Metal Integrated Circuits (COSMIC). (2014). ‘Project public final report’. Complementary Organic Semiconductor and Metal Integrated Circuits, GA-Nr. 247681. [Online]. Available: http://cordis.europa.eu/docs/projects/cnect/1/247681/080/deliverables/001-COSMICpublicreportV41.pdf
[106]Il Kim, S., Park, J.-S., Kim, C. J., Park, J. C., Song, I. and Park, Y. S., ‘High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer’, J. Electrochem. Soc., vol. 156, no. 3, p. H184-H187, 2009.Google Scholar
[107]Xiong, W., Guo, Y., Zschieschang, U., Klauk, H. and Murmann, B., ‘A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass’, IEEE J. Solid-State Circuits, vol. 45, no. 7, pp. 13801388, Jul. 2010.CrossRefGoogle Scholar
[108]Myny, K., van Lieshout, P., Genoe, J., Dehaene, W. and Heremans, P., ‘Accounting for variability in the design of circuits with organic thin-film transistors’, Org. Electron., vol. 15, no. 4, pp. 937942, 2014.CrossRefGoogle Scholar
[109]Zhang, X., Ge, T. and Chang, J. S., ‘Fully-additive printed electronics: Transistor model, process variation and fundamental circuit designs’, Org. Electron., vol. 26, pp. 371379, 2015.CrossRefGoogle Scholar
[110]Jacob, S., Benwadih, M., Bablet, J., Chartier, I., Gwoziecki, R., Abdinia, S., Cantatore, E., Maddiona, L., Tramontana, F., Maiellaro, G., Mariucci, L., Palmisano, G. and Coppard, R., ‘High performance printed N and P-type OTFTs for complementary circuits on plastic substrate’, in Eur. Solid-State Device Res. Conf., Bordeaux, France, 2012, pp. 173176.Google Scholar
[111]Abdinia, S., Ke, T.-H., Ameys, M., Li, J., Steudel, S., Vandersteen, J. L., Cobb, B., Torricelli, F., van Roermund, A. and Cantatore, E., ‘Organic CMOS line drivers on foil’, J. Disp. Technol., vol. 11, no. 6, pp. 564569, Jun. 2015.CrossRefGoogle Scholar
[112]Tu, D., Takimiya, K., Zschieschang, U., Klauk, H. and Forchheimer, R., ‘Modeling of drain current mismatch in organic thin-film transistors’, J. Disp. Technol., vol. 11, no. 6, pp. 559563, Jun. 2015.CrossRefGoogle Scholar
[113]Kamiya, T., Nomura, K. and Hosono, H., ‘Present status of amorphous In-Ga-Zn-O thin-film transistors’, Sci. Technol. Adv. Mater., vol. 11, no. 4, p. 44305, Aug. 2010.CrossRefGoogle ScholarPubMed
[114]Ha, C., Lee, H., Kwon, J., Seok, S., Ryoo, C.-I., Yun, K., Kim, B., Shin, W. and Cha, S., ‘69.2: distinguished paper: High reliable a-IGZO TFTs with self-aligned coplanar structure for large-sized ultrahigh-definition OLED TV’, SID Symp. Dig. Tech. Pap., vol. 46, no. 1, pp. 10201022, Jun. 2015.CrossRefGoogle Scholar
[115]Yu, X., Smith, J., Zhou, N., Zeng, L., Guo, P., Xia, Y., Alvarez, A., Aghion, S., Lin, H., Yu, J., Chang, R. P. H., Bedzyk, M. J., Ferragut, R., Marks, T. J. and Facchetti, A., ‘Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors’, Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 11, pp. 32173222, 2015.CrossRefGoogle ScholarPubMed
[116]Rim, Y. S., Chen, H., Liu, Y., Bae, S. H., Kim, H. J. and Yang, Y., ‘Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics’, ACS Nano, vol. 8, no. 9, pp. 96809686, 2014.CrossRefGoogle ScholarPubMed
[117]Marien, H., Steyaert, M. S. J., van Veenendaal, E. and Heremans, P., ‘A fully integrated DELTA SIGMA ADC in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 276284, 2011.CrossRefGoogle Scholar
[118]Nausieda, I., Ryu, K. K., Da He, D., Akinwande, A. I., Bulovic, V. and Sodini, C. G., ‘Mixed-signal organic integrated circuits in a fully photolithographic dual threshold voltage technology’, IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 865873, 2011.CrossRefGoogle Scholar
[119]Gay, N. and Fischer, W. J., ‘OFET-based analog circuits for microsystems and RFID-sensor transponders’, in Polytronic 2007 – 6th Int. IEEE Conf. Polym. Adhes. Microelectron. Photonics, Odaiba, Japan, 2007 pp. 143148, 2007.
[120]Chang, J., Zhang, X., Ge, T. and Zhou, J., ‘Fully printed electronics on flexible substrates: High gain amplifiers and DAC’, Org. Electron., vol. 15, no. 3, pp. 701710, 2014.CrossRefGoogle Scholar
[121]Fukuda, K., Minamiki, T., Minami, T., Watanabe, M., Fukuda, T., Kumaki, D. and Tokito, S., ‘Printed organic transistors with uniform electrical performance and their application to amplifiers in biosensors’, Adv. Electron. Mater., vol. 1, no. 7, p. 1400052, Jul. 2015.CrossRefGoogle Scholar
[122]Zysset, C., Münzenrieder, N., Petti, L., Buthe, L., Salvatore, G. A. and Tröster, G., ‘IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm’, IEEE Electron Device Lett., vol. 34, no. 11, pp. 13941396, Nov. 2013.CrossRefGoogle Scholar
[123]Salvatore, G. A., Münzenrieder, N., Kinkeldei, T., Petti, L., Zysset, C., Strebel, I., Büthe, L. and Tröster, G., ‘Wafer-scale design of lightweight and transparent electronics that wraps around hairs’, Nat. Commun., vol. 5, p. 2982, Jan. 2014.CrossRefGoogle ScholarPubMed
[124]Maiellaro, G., Ragonese, E., Gwoziecki, R., Jacobs, S., Marjanovic, N., Chrapa, M., Schleuniger, J. and Palmisano, G., ‘Ambient light organic sensor in a printed complementary organic TFT technology on flexible plastic foil’, IEEE Trans. Circuits Syst. I Regul. Pap., vol. 61, no. 4, pp.10361043, 2014.CrossRefGoogle Scholar
[125]Abdinia, S., Torricelli, F., Maiellaro, G., Coppard, R., Daami, A., Jacob, S., Mariucci, L., Palmisano, G., Ragonese, E., Tramontana, F., van Roermund, A. H. M., and Cantatore, E., ‘Variation-based design of an AM demodulator in a printed complementary organic technology’, Org. Electron., vol. 15, no. 4, pp. 904912, 2014.CrossRefGoogle Scholar
[126]Vaidya, V., Wilson, D. M., Zhang, X. and Kippelen, B., ‘An organic complementary differential amplifier for flexible AMOLED applications’, in 2010 IEEE Int. Symp. Circuits Syst., Paris, France, 2010, pp. 32603263.CrossRefGoogle Scholar
[127]Guerin, M., Daami, A., Jacob, S., Bergeret, E., Bènevent, E., Pannier, P. and Coppard, R., ‘High-gain fully printed organic complementary circuits on flexible plastic foils’, IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 35873593, 2011.CrossRefGoogle Scholar
[128]Ishida, K., Huang, T. C., Honda, K., Sekitani, T., Nakajima, H., Maeda, H., Takamiya, M., Someya, T. and Sakurai, T., ‘A 100-V AC energy meter integrating 20-V organic CMOS digital and analog circuits with a floating gate for process variation compensation and a 100-v organic pMOS rectifier’, IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 301309, 2012.CrossRefGoogle Scholar
[129]Lee, S., Reuveny, A., Matsuhisa, N., Nawrocki, R., Yokota, T. and Someya, T., ‘Enhancement of closed-loop gain of organic amplifiers using double-gate structures’, IEEE Electron Device Lett., vol. 37, no. 6, pp. 770773, 2016.Google Scholar
[130]Huang, T.-C., Fukuda, K., Lo, C.-M., Yeh, Y.-H., Sekitani, T., Someya, T. and Cheng, K.-T., ‘Pseudo-CMOS: A design style for low-cost and robust flexible electronics’, IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 141150, Jan. 2011.CrossRefGoogle Scholar
[131]Shabanpour, R., Meister, T., Ishida, K., Petti, L., Münzenrieder, N., Salvatore, G. A., Boroujeni, B. K., Carta, C., Tröster, G. and Ellinger, F., ‘High gain amplifiers in flexible self-aligned a-IGZO thin-film-transistor technology’, in 2014 21st IEEE Int. Conf. on Electron., Circuits and Syst., Marseille, France, 2014, p. 108–111.
[132]Shabanpour, R., Ishida, K., Meister, T., Münzenrieder, N., Petti, L., Salvatore, G., Kheradmand-Boroujeni, B., Carta, C., Tröster, G. and Ellinger, F., ‘A 70° phase margin OPAMP with positive feedback in flexible a-IGZO TFT technology’, in 2015 IEEE 58th Int. Midwest Symp. Circuits Syst., Fort Collins, CO, USA, 2015, pp. 14.Google Scholar
[133]Garripoli, C., van der Steen, J.-L. P. J., Torricelli, F., Ghittorelli, M., Gelinck, G. H., van Roermund, A. H. M., and Cantatore, E., ‘Analogue frontend amplifiers for bio-potential measurements manufactured with a-IGZO TFTs on flexible substrate’, IEEE J. Emerg. Sel. Top. Circuits Syst., Fort Collins, CO, USA, 2015, pp. 14.Google Scholar
[134]Kane, M. G., Campi, J., Cuomo, F. P. and Greening, B. K., ‘Fast organic circuits on flexible polymeric substrates’, in Int. Electron Devices Meeting 2000, San Francisco, CA, USA, 2000, pp. 619622.Google Scholar
[135]Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P., ‘High-resolution inkjet printing of all-polymer transistor circuits’, Science, vol. 290, no. 5499, pp. 21232126, 2000.CrossRefGoogle ScholarPubMed
[136]Myny, K., van Veenendaal, E., Gelinck, G. H., Genoe, J., Dehaene, W. and Heremans, P., ‘An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil’, IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 284291, Jan. 2012.CrossRefGoogle Scholar
[137]Myny, K., Rockelé, M., Chasin, A., Pham, D. V., Steiger, J., Botnaras, S., Weber, D., Herold, B., Ficker, J., der van Putten, B., Gelinck, G. H., Genoe, J., Dehaene, W. and Heremans, P., ‘Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag’, IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 23872393, Jul. 2014.Google Scholar
[138]Daami, A., Bory, C., Benwadih, M., Jacob, S., Gwoziecki, R., Chartier, I., Coppard, R., Serbutoviez, C., Maddiona, L., Fontana, E. and Scuderi, A., ‘Fully printed organic CMOS technology on plastic substrates for digital and analog applications’, in IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2011, pp. 328329.Google Scholar
[139]Jacob, S., Abdinia, S., Benwadih, M., Bablet, J., Chartier, I., Gwoziecki, R., Cantatore, E., van Roermund, A. H. M., Maddiona, L., Tramontana, F., Maiellaro, G., Mariucci, L., Rapisarda, M., Palmisano, G. and Coppard, R., High performance printed N and P-type OTFTs enabling digital and analog complementary circuits on flexible plastic substrate’, Solid. State. Electron., vol. 84, pp.167178, 2013.CrossRefGoogle Scholar
[140]Ishida, K., Shabanpour, R., Boroujeni, B. K., Meister, T., Carta, C., Ellinger, F., Petti, L., Münzenrieder, N. S., Salvatore, G. A. and Tröster, G., ‘22.5 dB open-loop gain, 31 kHz GBW pseudo-CMOS based operational amplifier with a-IGZO TFTs on a flexible film’, in 2014 IEEE Asian Solid-State Circuits Conf., Kaohsiung, Taiwan, 2014, pp. 313316.
[141]Kalb, W. L., Haas, S., Krellner, C., Mathis, T. and Batlogg, B., ‘Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals’, Phys. Rev. B, vol. 81, no. 15, pp. 113, 2010.CrossRefGoogle Scholar
[142]Diemer, P. J., Lamport, Z. A., Mei, Y., Ward, J. W., Goetz, K. P., Li, W., Marcia, M., Guthold, M., Anthony, J. E., Jurchescu, O. D., Diemer, P. J., Lamport, Z. A., Mei, Y., Ward, J. W., Goetz, K. P., Li, W., Payne, M. M., Guthold, M. and Anthony, J. E., ‘Quantitative analysis of the density of trap states at the semiconductor-dielectric interface in organic field-effect transistors’, Appl. Phys. Lett., vol. 107, no. 10, p. 103303, 2015.CrossRefGoogle Scholar
[143]Binkley, D. M., Verma, N., Crawford, R. L., Brandon, E. J. and Jackson, T. N., ‘Design of an auto-zeroed, differential, organic thin-film field-effect transistor amplifier for sensor applications’, in Opt. Sci. Technol. SPIE 49th Annu. Meet., Denver, CO, USA, 2004, pp. 4152.Google Scholar
[144]Abdinia, S., Benwadih, M., Cantatore, E., Chartier, I., Jacob, S., Maddiona, L., Maiellaro, G., Mariucci, L., Palmisano, G., Rapisarda, M., Tramontana, F. and van Roermund, A. H. M., ‘Design of analog and digital building blocks in a fully printed complementary organic technology’, in Eur. Solid-State Circuits Conf., Bordeaux, France, 2012, pp. 145148.Google Scholar
[145]Moy, T., Huang, L., Rieutort-Louis, W., Wagner, S., Sturm, J. C. and Verma, N., ‘16.4 A flexible EEG acquisition and biomarker extraction system based on thin-film electronics’, in 2016 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2016, pp. 294295.
[146]Enz, C. C. and Temes, G. C., ‘Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization’, Proc. IEEE, vol. 84, no. 11, pp. 15841614, 1996.CrossRefGoogle Scholar
[147]Xiong, W., Zschieschang, U., Klauk, H. and Murmann, B., ‘A 3V 6b successive-approximation ADC using complementary organic thin-film transistors on glass’, in 2010 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA 2010, pp. 134135.
[148]Abdinia, S., Benwadih, M., Coppard, R., Jacob, S., Maiellaro, G., Palmisano, G., Rizzo, M., Scuderi, A., Tramontana, F., van Roermund, A. and Cantatore, E., ‘A 4b ADC manufactured in a fully-printed organic complementary technology including resistors’, in 2013 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2013, pp. 106107.CrossRefGoogle Scholar
[149]Zaki, T., Ante, F., Zschieschang, U., Butschke, J., Letzkus, F., Richter, H., Klauk, H. and Burghartz, J. N., ‘A 3.3 v 6-bit 100 kS/s current-steering digital-to-analog converter using organic p-type thin-film transistors on glass’, IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 292300, 2012.CrossRefGoogle Scholar
[150]Ouzounov, S., Roza, E., Hegt, J. A., van der Weide, G. and van Roermund, A. H. M., ‘Analysis and design of high-performance asynchronous sigma-delta modulators with a binary quantizer’, IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 588596, 2006.CrossRefGoogle Scholar
[151]Raiteri, D., van Lieshout, P., van Roermund, A. and Cantatore, E., ‘An organic VCO-based ADC for quasi-static signals achieving 1LSB INL at 6b resolution’, in 2013 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2013, pp. 108109.CrossRefGoogle Scholar
[152]Drack, M., Graz, I., Sekitani, T., Someya, T., Kaltenbrunner, M. and Bauer, S., ‘An imperceptible plastic electronic wrap’, Adv. Mater., vol. 27, no. 1, pp. 3440, 2014.CrossRefGoogle ScholarPubMed
[153]Perinot, A., Kshirsagar, P., Malvindi, M. A., Pompa, P. P., Fiammengo, R. and Caironi, M., ‘Direct-written polymer field-effect transistors operating at 20 MHz’, Sci. Rep., vol. 6, no. 1, p. 38941, Dec. 2016.CrossRefGoogle ScholarPubMed
[154]Münzenrieder, N., Petti, L., Zysset, C., Kinkeldei, T., Salvatore, G. A. and Tröster, G., ‘Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz’, IEEE Trans. Electron Devices, vol. 60, no. 9, pp. 28152820, Sep.2013.CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics
Available formats
×