Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T21:36:52.182Z Has data issue: false hasContentIssue false

Calcium Isotopes

Published online by Cambridge University Press:  11 December 2020

Elizabeth M. Griffith
Affiliation:
Ohio State University
Matthew S. Fantle
Affiliation:
Pennsylvania State University

Summary

Precise measurements of the calcium (Ca) isotopes have provided constraints on Ca cycling at global and local scales, and quantified rates of carbonate diagenesis in marine sedimentary systems. Key to applying Ca isotopes as a geochemical tracer of Ca cycling, carbonate (bio)mineralization, and diagenesis is an understanding of the impact of multiple factors potentially impacting Ca isotopes in the rock record. These factors include variations in stable isotopic fractionation factors, the influence of local-scale Ca cycling on Ca isotopic gradients in carbonate settings, carbonate dissolution and reprecipitation, and the relationship between the Ca isotopic composition of seawater and mineral phases that record the secular evolution of seawater chemistry.
Get access
Type
Element
Information
Online ISBN: 9781108853972
Publisher: Cambridge University Press
Print publication: 21 January 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahm, A.-S. C., Bjerrum, C. J., Blättler, C. L., Swart, P. K., and Higgins, J. A. 2018. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta 236, 140159.Google Scholar
Ahm, A-S. C., Maloof, A. C., Macdonald, F. A., et al. 2019. An early diagenetic deglacial origin for basal Ediacaran cap dolostones. Earth Planet. Sci. Lett. 506C, 292307.Google Scholar
Balter, V., Martin, J. E., Tacail, T., Suan, G., Renaud, S., and Girard, C. 2019. Calcium stable isotopes place Devonian conodonts as first level consumers. Geochem. Perspect. Lett. 10, 3639.CrossRefGoogle Scholar
Banerjee, A., and Chakrabarti, R. 2018. Large Ca stable isotopic (δ44/40Ca) variation in a hand-specimen sized spheroidally weathered diabase due to selective weathering of clinopyroxene and plagioclase. Chem. Geol. 483, 295303.Google Scholar
Blättler, C. L., and Higgins, J. A. 2014. Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca. Geology 42, 711714.CrossRefGoogle Scholar
Blättler, C. L., and Higgins, J. A. 2017. Testing Urey’s carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet. Sci. Lett. 479, 241251.CrossRefGoogle Scholar
Blättler, C. L., Jenkyns, H. C., Reynard, L. M., and Henderson, G. M. 2011. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 7788.Google Scholar
Blättler, C. L., Henderson, G. M., and Jenkyns, H. C. 2012. Explaining the Phanerozoic Ca isotope history of seawater. Geology 40, 843846.Google Scholar
Blättler, C. L., Miller, N. R., and Higgins, J. A. 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet. Sci. Lett. 419, 3242.Google Scholar
Blättler, C. L., Claire, M. W., Prave, A. R., et al. 2018. Two-billion-year-old evaporates capture Earth’s great oxidation. Science 360, 320323.Google Scholar
Boulyga, S. F. 2010. Calcium isotope analysis by mass spectrometry. Mass Spectrometry Reviews 29, 685716.Google Scholar
Bradbury, H. J., and Turchyn, A. V. 2018. Calcium isotope fractionation in sedimentary pore fluids from ODP Leg 175: Resolving carbonate recrystallization. Geochim. Cosmochim. Acta 236, 121139.Google Scholar
Brazier, J.-M., Suan, G., Tacail, T., et al. 2015. Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth Planet. Sci. Lett. 411, 164176.Google Scholar
Brazier, J.-M., Schmitt, A.-D., Gangloff, S., Chabaux, F., and Tertre, E. 2019. Calcium isotopic fractionation during adsorption and desorption onto common soil phyllosilicates. Geochim. Cosmochim. Acta 250, 324347.Google Scholar
Broecker, W. S., and Peng, T.-H. 1982. Tracers in the Sea. Palisades, NY: Eldigio Press.Google Scholar
Chang, V. T. C., Williams, R., Makishima, A., Belshaw, N. S., and O’Nions, R. K. 2004. Mg and Ca isotope fractionation during CaCO3 biomineralization. Biochem. Biophys. Res. Commun. 323, 7985.Google Scholar
Chu, N.-C., Henderson, G. M., Belshaw, N. S., and Hedges, R. E. M. 2006. Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl. Geochem. 21, 16561667.Google Scholar
CIAAW. 2017. Isotopic compositions of the elements. Available at; www.ciaaw.orgGoogle Scholar
Clementz, M. T., Holden, P., and Koch, P. L. 2003. Are calcium isotopes a reliable monitor of trophic level in marine settings? Int. J. Osteoarchaeol. 13, 2936.Google Scholar
De La Rocha, C. L., and DePaolo, D. J. 2000. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289, 11761178.Google Scholar
DePaolo, D. J. 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev. Mineral. Geochem. 55, 255288.Google Scholar
Dickson, J. A. D. 2002. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298, 12221224.Google Scholar
Druhan, J. L., Lammers, L., and Fantle, M. S. 2020. On the utility of quantitative modeling to the interpretation of Ca isotopes. Chem. Geol. 537, 119469.Google Scholar
Elderfield, H., and Schultz, A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191224.Google Scholar
Erhardt, A. M., Turchyn, A. V., Bradbury, H. J., and Dickson, J. A. D. 2020. The calcium isotopic composition of carbonate hardground cements: A new record of changes in ocean chemistry? Chem. Geol. 540, 119490.Google Scholar
Fantle, M. S. 2010. Evaluating the Ca isotope proxy. Am. J. Sci. 310, 194230.Google Scholar
Fantle, M. S. 2015. Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies. Geochim. Cosmochim. Acta 148, 378401.Google Scholar
Fantle, M. S., and DePaolo, D. J. 2005. Variations in the marine Ca cycle over the past 20 million years. Earth Planet. Sci. Lett. 237, 102117.Google Scholar
Fantle, M. S., and DePaolo, D. J. 2007. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim. Cosmochim. Acta 71, 25242546.Google Scholar
Fantle, M. S., and Higgins, J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. Geochim. Cosmochim. Acta 142, 458481.Google Scholar
Fantle, M. S., and Ridgwell, A. 2020. Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record. Chem. Geol. 547, 119672. DOI:10.1016/j.chemgeo.2020.119672.Google Scholar
Fantle, M. S., and Tipper, E. T. 2014. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth Sci. Rev. 129, 148177.Google Scholar
Fantle, M. S., Maher, K. M., and DePaolo, D. J. 2010. Isotopic approaches for quantifying the rates of marine burial diagenesis. Rev. Geophys. 48, RG3002, DOI:10.1029/2009RG000306.Google Scholar
Fantle, M. S., Barnes, B. D., and Lau, K. V. 2020. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annu. Rev. Earth Planet. Sci. 48. DOI:10.1146/annurev-earth-073019-060021.CrossRefGoogle Scholar
Farkaš, J., Böhm, F., Wallmann, K., et al. 2007. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms. Geochim. Cosmochim. Acta 71, 51175134.Google Scholar
Farkaš, J., Fryda, J., and Holmden, C. 2016. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion. Earth Planet. Sci. Lett. 451, 3140.Google Scholar
Fietzke, J., Eisenhauer, A., Gussone, N., et al. 2004. Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique. Chem. Geol. 206, 1120.Google Scholar
Gordon, G. W., Monge, J., Channon, M. B., et al. 2014. Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia 28, 21122115.Google Scholar
Griffith, E. M., and Fantle, M. S. 2020. Introduction to calcium isotope geochemistry: Past lessons and future directions. Chem. Geol. 528, 119271.Google Scholar
Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., and Thomas, E. 2008a. A dynamic marine calcium cycle during the past 28 million years. Science 322, 16711674Google Scholar
Griffith, E. M., Paytan, A., Kozdan, R., Eisenhauer, A., and Ravelo, A. C. 2008b. Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet. Sci. Lett 268, 124136.Google Scholar
Griffith, E. M., Paytan, A., Eisenhauer, A., Bullen, T. D., and Thomas, E. 2011. Seawater calcium isotope ratios across the Eocene-Oligocene Transition. Geology 39, 683686.CrossRefGoogle Scholar
Griffith, E. M., Fantle, M. S., Eisenhauer, A., Paytan, A., and Bullen, T. D. 2015. Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Boundary. Earth Planet. Sci. Lett 419, 8192.Google Scholar
Griffith, E. M., Schmitt, A.-D., Andrews, M. G., and Fantle, M. S. 2020. Elucidating modern geochemical cycles at local, regional, and global scales using calcium isotopes. Chem. Geol. 534, 119445.Google Scholar
Gussone, N., and Filipsson, H. L. 2010. Calcium isotope ratios in calcitic tests of benthic foraminifers. Earth Planet. Sci. Lett. 290, 108117.CrossRefGoogle Scholar
Gussone, N., and Heuser, A. 2016. Biominerals and biomaterial. In Gussone, N., Schmitt, A.-D., Heuser, A., Wombacher, F., Dietzel, M., Tipper, E., and Schiller, M. (eds.), Calcium Stable Isotope Geochemistry, pp. 111144. New York: Springer Science+Business Media.Google Scholar
Gussone, N., Eisenhauer, A., Heuser, A., et al. 2003. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim. Cosmochim. Acta 67, 13751382.Google Scholar
Gussone, N., Eisenhauer, A., Tiedemann, R., et al. 2004. Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios. Earth Planet. Sci. Lett. 227, 201214.Google Scholar
Gussone, N., Böhm, F., Eisenhauer, A., et al. 2005. Calcium isotope fractionation in calcite and aragonite. Geochim. Cosmochim. Acta 69, 44854494.Google Scholar
Gussone, N., Hönisch, B., Heuser, A., Eisenhauer, A., Spindler, M., and Hemleben, C. 2009. A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim. Cosmochim. Acta 73, 72417255.Google Scholar
Gussone, N., Schmitt, A.-D., Heuser, A., et al. 2016. Calcium Stable Isotope Geochemistry. Advances in Isotope Geochemistry. New York: Springer Science+Business Media.Google Scholar
Gutjahr, M., Ridgwell, A., Sexton, P. F., et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature 548, 573577.Google Scholar
Hardie, L. A. 1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24, 279283.Google Scholar
Hassler, A., Martin, J. E., Amiot, R., et al. 2018. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B: Biol. Sci. 285, doi.org/10.1098/rspb.2018.0197.Google Scholar
Harouaka, K., Eisenhauer, A., and Fantle, M. S. 2014. Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation. Geochim. Cosmochim. Acta 129, 157176.Google Scholar
Hensley, T. M. 2006. Calcium isotopic variation in marine evaporites and carbon-ates: Applications to Late Miocene Mediterranean brine chemistry and late Cenozoic calcium cycling in the oceans. PhD thesis, University of California, San Diego.Google Scholar
Heuser, A., and Eisenhauer, A. 2010. A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone 46, 889896.Google Scholar
Heuser, A., Eisenhauer, A., Böhm, F., et al. 2005. Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography 20, PA2013.Google Scholar
Heuser, A., Tütken, T., Gussone, N., and Galer, S. J. G. 2011. Calcium isotopes in fossil bones and teeth: Diagenetic versus biogenic origin. Geochim. Cosmochim. Acta 75, 34193433.Google Scholar
Heuser, A., Eisenhauser, A., Scholz-Ahrens, K. E., and Schrezenmeir, J. 2016a. Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological model for Ca homeostasis in humans. Isot. Environ. Health. Stud. 52, 633648.Google Scholar
Heuser, A., Schmitt, A.-D., Gussone, N., and Wombacher, F. 2016b. Analytical methods. In Gussone, N., Schmitt, A.-D., Heuser, A., Wombacher, F., Deitzel, M., Tipper, E., and Schiller, M., Calcium Stable Isotope Geochemistry, 2373. New York: Springer Science+Business Media.Google Scholar
Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220, 512534.Google Scholar
Hinojosa, J. L., Brown, S. T., Chen, J., DePaolo, D. J., Paytan, A., Shen, S., and Payne, J. L. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743746.Google Scholar
Hippler, D., Eisenhauer, A., and Nägler, T. F. 2006. Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka. Geochim. Cosmochim. Acta 70, 90100.Google Scholar
Hippler, D., Witbaard, R., van Aken, H. M., Buhl, D., and Immenhauser, A. 2013. Exploring the calcium isotopes signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 7587.Google Scholar
Holmden, C., Papanastassiou, D. A., Blanchon, P., and Evans, S. 2012. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. Geochim. Cosmochim. Acta 83, 179194.Google Scholar
Horita, J., Zimmermann, H., and Holland, H. D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 37333756.Google Scholar
Huber, C., Druhan, J. L., and Fantle, M. S. 2017. Perspectives on geochemical proxies: The impact of model and parameter selection on the quantification of carbonate recrystallization rates. Geochim. Cosmochim. Acta 217, 171192.Google Scholar
Husson, J. M., Higgins, J. A., Maloof, A. C., and Schoene, B. 2015. Ca and Mg isotope constraints on the origin of Earth’s deepest d13C excursion. Geochim. Cosmochim. Acta 160, 243266.Google Scholar
IAEA. Livechart – Table of Nuclides. Available at: www.nds.iaea.org/relnsd/vcharthtml/VChartHTML.htmlGoogle Scholar
Jacobson, A. D., Andrews, M. G., Lehn, G. O., and Holmden, C. 2015. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes. Earth Planet. Sci. Lett. 416, 132142.Google Scholar
Jost, A. B., Bachan, A., van de Schootbrugge, B., Brown, S. T., DePaolo, D., and Payne, J. L. 2017. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones. Geochem. Geophys. Geosyst. 18, 113124.Google Scholar
Kasemann, S. A., Schmidt, D. N., Pearson, P. N., and Hawkesworth, C. J. 2008. Biological and ecological insights into Ca isotopes in planktic foraminifers as a paleotemperature proxy. Earth Planet. Sci. Lett. 271, 292302.Google Scholar
Kiessling, W., Flugel, E., and Golonka, J. 2003, Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36, 195225.Google Scholar
Kisakürek, B., Eisenhauer, A., Böhm, F., Hathorne, E. C., and Erez, J. 2011. Controls on calcium isotope fractionation in cultured planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera. Geochim. Cosmochim. Acta 75, 427443.Google Scholar
Komar, N., and Zeebe, R. E. 2011. Oceanic calcium changes from enhanced weathering during the Paleocene-Eocene thermal maximum: No effect on calcium-based proxies. Paleoceanography 26, PA3211.Google Scholar
Komar, N., and Zeebe, R. E. 2016. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115130.Google Scholar
Kozdon, R., Eisenhauer, A., Weinelt, M., Meland, M. Y., and Nürnberg, D. 2009. Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements. Geochem. Geophys. Geosyst. 10 (2008GC002169).Google Scholar
Langer, G., Gussone, N., Nehrke, G., Riebesell, U., Eisenhauer, A., and Thoms, S. 2007. Calcium isotopic fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification. Geochem. Geophys. Geosyst. 8 (2006GC001422).Google Scholar
Lau, K. V., Maher, K., Brown, S. T., et al. 2017. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. Chem. Geol. 471, 1337.Google Scholar
Lehn, G. O., Jacobson, A. D., and Holmden, C. 2013. Precise analysis of Ca isotope ratios (δ40/44Ca) using an optimized 43Ca–42Ca double-spike MC-TIMS method. Int. J. Mass Spectrom. Doi.org/10.1016/j.ijms.2013.06.013.Google Scholar
Lemarchand, D., Wasserburg, G. J., and Papanstassiou, D. A. 2004. Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim. Cosmochim. Acta 68, 46654678.Google Scholar
Linzmeier, B. J., Jacobson, A. D., Sageman, B. B., et al. 2020. Calcium isotope evidence for environmental variability before and across the Cretaceous-Paleogene mass extinction. Geology 48, 3438.Google Scholar
Lord, N. S., Ridgwell, A., Thorne, M. C., and Lunt, D. J. 2016. An impulse response function for the ‘long tail’ of excess atmospheric CO2 in an Earth system model. Global Biogeochem. Cycles 30, 217.Google Scholar
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V. 2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294, 10861088.Google Scholar
Martin, J. E., Tacail, T., Adnet, S., Girard, C., and Balter, V. 2015. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chem. Geol. 415, 118125.Google Scholar
Martin, J. E., Vincent, P., Tacail, T., et al. 2017. Calcium isotopic evidence for vulnerable marine ecosystem structure prior to the K/Pg extinction. Curr. Biol. 27, 16411644.Google Scholar
Martin, J. E., Tacail, T., Cerling, T. E., and Balter, V. 2018. Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals. Earth Plant. Sci. Lett. 503, 227235.Google Scholar
Millero, F. J. 1996. Chemical Oceanography., Boca Raton, FL: CRC Press.Google Scholar
Morgan, J. L. L., Skulan, J. L., Gordon, G. W., Romaniello, S. J., Smith, S. M., and Anbar, A. D. 2012. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 99899994.Google Scholar
Nägler, T., Eisenhauer, A., Muller, A., Hemleben, C., and Kramers, J. 2000. The δ44Ca- temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures. Geochem. Geophys. Geosyst. 1 (2000GC000091).Google Scholar
Payne, J. L., and Clapham, M. E. 2012. End-Permian mass extinction in the oceans: An ancient analog for the 21st century? Annu Rev. Earth Planet. Sci. 40, 89111.Google Scholar
Payne, J. L., Turchyn, A. V., Paytan, A., et al. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl. Acad. USA 107, 85438548.Google Scholar
Pogge, Von Strandmann, P., Burton, K., Snaebjornsdottir, S., et al .2019. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat. Commun. 10, 1983.Google Scholar
Porter, S. M. 2007. Seawater chemistry and early carbonate biomineralization. Science 316, 1302.Google Scholar
Rangarajan, R., Mondal, S., Thankachan, P., Chakrabarti, R., and Kurpad, A. V. 2018. Assessing bone mineral changes in response to vitamin D supplementation using natural variability in stable isotopes of calcium in urine. Sci. Rep. 8, 16751.CrossRefGoogle ScholarPubMed
Reynard, L. M., Henderson, G. M., and Hedges, R. E. M. 2010. Calcium isotope ratios in animal and human bone. Geochim. Cosmochim. Acta 74, 37253750.Google Scholar
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., et al. 2007. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87104.Google Scholar
Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. 1978. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 10751090.Google Scholar
Ryu, J.-S., Jacobson, A. D., Holmden, C., Lundstrom, C. C., and Zhang, Z. 2011. The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg, geochemistry of granite weathering at pH = 1 and T = 25°C: power-law processes and the relative reactivity of minerals. Geochim. Cosmochim. Acta 75, 60046026.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305, 1922.Google Scholar
Santamaria-Fernandez, R., and Wolff, J.-C. 2010. Applications of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes. Rapid Comm. Mass. Spectrom. 24, 19931999.Google Scholar
Schmitt, A.-D., Chabaux, F., and Stille, P. 2003a. The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 116.Google Scholar
Schmitt, A.-D., Stille, P., and Vennemann, T. 2003b. Variations of the 44Ca /40Ca ratio in seawater during the past 24 million years: Evidence from δ44Ca and δ18O values of Miocene phosphates. Geochim. Cosmochim. Acta 67, 26072614.Google Scholar
Shao, Y. X., Farkaš, J., Holmden, C., et al. 2018. Calcium and strontium isotope systematics in the lagoon-estuarine environments of South Australia: Implications for water source mixing, carbonate fluxes and fish migration. Geochim. Cosmochim. Acta 239, 90108.Google Scholar
Silva-Tamayo, J. C., Lau, K. V., Jost, A. B., et al. 2018. Global perturbation of the marine calcium cycle during the Permian-Triassic transition. GSA Bull. 130, 13231338.Google Scholar
Sime, N. G., De La Rocha, C. L., and Galy, A. 2005. Negligible temperature dependence of calcium isotope fractionation in twelve species of planktonic foraminfera. Earth Planet. Sci. Lett. 232, 5166.Google Scholar
Sime, N. G., De La Rocha, C. L., Tipper, E. T., Tripati, A., Galy, A., and Bickle, M. J. 2007. Interpreting the Ca isotope record of marine biogenic carbonates. Geochim. Cosmochim. Acta 71, 39793989.Google Scholar
Skulan, J., and DePaolo, D. J. 1999. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc. Natl. Acad. Sci. USA 96, 1370913713.Google Scholar
Skulan, J., DePaolo, D. J., and Owens, T. L. 1997. Biological control of calcium isotope abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61, 25052510.Google Scholar
Skulan, J., Bullen, T., Anbar, A. D., 2007. Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin. Chem. 53, 11551158.Google Scholar
Soudry, D., Segal, I., Nathan, Y., et al. 2004. 44Ca /42Ca and 143Nd /144Nd isotope variations in Cretaceous-Eocene Tethyan francolites and their bearings on phosphogenesis in the southern Tethys. Geology 32, 389392.Google Scholar
Soudry, D., Glenn, C. R., Nathan, Y., Segal, I., and VonderHaar, D. L. 2006. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci. Rev. 78, 2757.Google Scholar
Sun, X., Higgins, J., and Turchyn, A. V. 2016. Diffusive cation fluxes in deep-sea sediments and insights into the global geochemical cycles of calcium, magnesium, sodium and potassium. Mar. Geol. 373, 6477.Google Scholar
Tacail, T., Télouk, P., and Balter, V. 2016. Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS. J. Anal. At. Spectrom. 31, 152162.Google Scholar
Tacail, T., Thivichon-Prince, B., Martin, J. E., Charles, C., Viriot, L., and Balter, V. 2017. Assessing human weaning practices with calcium isotopes in tooth enamel. Proc. Natl. Acad. Sci. USA 114, 62686273.Google Scholar
Tacail, T., Martin, J. E., Arnaud-Godet, F., et al. 2019. Calcium isotopic patterns in enamel reflect different nursing behaviors among South African early hominins. Sci. Adv. 5, eaax3250.Google Scholar
Tanaka, Y.-K., Yajima, N., Higuchi, Y., Yamato, H., and Hirata, T. 2017. Calcium isotope signature: New proxy for net change in bone volume for chronic kidney disease and diabetic rats. Metallomics 9, 17451755.Google Scholar
Tipper, E. T., Gaillardet, J., Galy, A., and Louvat, P. 2010. Calcium isotope ratios in the world’s largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes. Global Biogeochem. Cy. 24, GB3019, 13p. doi:10.1029/2009GB003574.Google Scholar
Tostevin, R., Bradbury, H. J., Shields, G. A., et al. 2019. Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late Ediacaran. Chem. Geol. 529, 119319.Google Scholar
Turchyn, A. V., and DePaolo, D. J. 2011. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments. Geochim. Cosmochim. Acta 75, 70817098.Google Scholar
Urey, H. 1952. The Planets: Their Origin and Development. New Haven, CT: Yale University Press.Google Scholar
Veizer, J., Ala, D., Azmy, K., et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 5988.Google Scholar
Wang, J., Jacobson, A. D., Zhang, H., et al. 2019. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143165.Google Scholar
Wang, M., Audi, G., Kondev, F. G., Huan, W. J., Naimi, S., and Xu, X. 2017. The AME2016 atomic mass evaluation. Chinese Phys. C 41, 030003.Google Scholar
Zhang, W., Hu, Z., Liu, Y., Feng, L., and Jiang, H. 2019. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chem. Geol. 522, 1625.Google Scholar
Zhu, P., and Macdougall, J. D. 1998. Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta 62, 16911698.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Calcium Isotopes
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Calcium Isotopes
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Calcium Isotopes
Available formats
×