Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T20:44:27.179Z Has data issue: false hasContentIssue false

Information Metamaterials

Published online by Cambridge University Press:  23 January 2021

Tie Jun Cui
Affiliation:
Southeast University
Shuo Liu
Affiliation:
Southeast University

Summary

Metamaterials have attracted enormous interests from both physics and engineering communities in the past 20 years, owing to their powerful ability in manipulating electromagnetic waves. However, the functionalities of traditional metamaterials are fixed at the time of fabrication. To control the EM waves dynamically, active components are introduced to the meta-atoms, yielding active metamaterials. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, are proposed, which can achieve dynamically controllable functionalities using field programmable gate array (FPGA). Most importantly, the digital coding representations of metamaterials set up a bridge between the digital world and physical world, and allow metamaterials to process digital information directly, leading to information metamaterials. In this Element, we review the evolution of information metamaterials, mainly focusing on their basic concepts, design principles, fabrication techniques, experimental measurement and potential applications. Future developments of information metamaterials are also envisioned.
Get access
Type
Element
Information
Online ISBN: 9781108955294
Publisher: Cambridge University Press
Print publication: 18 February 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brunet, T., Merlin, A., Mascaro, B., Zimny, K., Leng, J., Poncelet, O., Aristegui, C., Monval, O. M., Soft 3D acoustic metamaterial with negative index, Nat. Mater. 14, 384388 (2015).CrossRefGoogle ScholarPubMed
Zigoneanu, L., Popa, B.-I., Cummer, S. A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater. 13, 352355 (2014).CrossRefGoogle ScholarPubMed
Popa, B. I., Cummer, S. A., Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun. 5, 3398 (2014).Google Scholar
Cummer, S. A., Christensen, J., Alù, A., Nature-controlling sound with acoustic metamaterials, Nature Reviews Materials 1, 16001 (2016).Google Scholar
Cui, T. J., Smith, D. R., Liu, R., Metamaterials, Springer, 2010.CrossRefGoogle Scholar
Engheta, N., Ziolkowski, R. W., Metamaterials: Physics and engineering explorations, Wiley, 2006.Google Scholar
Smith, D. R., Vier, D. C., Koschny, T., Soukoule, C. M., Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).Google Scholar
Ziolkowski, R. W., Heyman, E., Wave propagation in media having negative permittivity and permeability, Phys. Rev. E 64, 056625 (2001).Google Scholar
Schurig, D., Mock, J. J., Smith, D. R., Electric-field-coupled resonators for negative permittivity metamaterials, Appl. Phys. Lett. 88, 041109 (2006).Google Scholar
Pendry, J. B., Holden, A. J., Robbins, D., Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans on Microw Theory & Tech 47(11), 20752084 (1999).Google Scholar
Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., Petrovic, J., Nanofabricated media with negative permeability at visible frequencies, Nature 438, 335338 (2005).CrossRefGoogle ScholarPubMed
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000).Google Scholar
Shelby, R. A., Smith, D. R., Schultz, S., Experimental verification of a negative index of refraction, Science 292(5514), 7779 (2001).CrossRefGoogle ScholarPubMed
Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000).Google Scholar
Soukoulis, C. M., Wegener, M., Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat. Photon. 5, 523530 (2011).Google Scholar
Zheludev, N. I., The road ahead for metamaterials, Science 328, 582583 (2010).Google Scholar
Pendry, J. B., Schurig, D., Smith, D. R., Controlling electromagnetic fields, Science 312, 17801782 (2006).Google Scholar
Leonhardt, U., Optical conformal mapping, Science 312 17771780 (2006).Google Scholar
Jiang, W. X., Qiu, C. W., Han, T. C., Cheng, Q., Ma, H. F., Zhang, S., Cui, T. J., Broadband all-dielectric magnifying lens for far-field high-resolution imaging, Adv. Mater. 25(48), 69636968 (2013).Google Scholar
Casse, B. D. F., Lu, W. T., Huang, Y. J., Gultepe, E., Menon, L., Sridhar, S., Super-resolution imaging using a three-dimensional metamaterials nanolens, Appl. Phys. Lett. 96, 023114 (2010).Google Scholar
Liu, R., Ji, C., Mock, J., Chin, J., Cui, T., Smith, D., Broadband ground-plane cloak, Science 323, 366369 (2009).Google Scholar
Ma, H. F., Cui, T. J., Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(21) (2010).Google Scholar
Jiang, W. X., Ma, H. F., Cheng, Q., Cui, T. J., Illusion media: Generating virtual objects using realizable metamaterials, Appl. Phys. Lett. 96, 121910 (2010).Google Scholar
Lai, Y., Ng, J., Chen, H., Han, D., Xiao, J., Zhang, Z., Chan, C. T., Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett. 102(25), 253902 (2009).CrossRefGoogle ScholarPubMed
Jiang, W. X., Qiu, C. W., Han, T., Zhang, S., Cui, T. J., Creation of ghost illusions using wave dynamics in metamaterials, Adv. Func. Mater. 23(32),40284034 (2013).Google Scholar
Pendry, J. B., A chiral route to negative refraction, Science 306(5700), 13531355 (2004).Google Scholar
Yao, J., Liu, Z., Liu, Y., Wang, Y., Sun, C., Bartal, G., Stacy, A. M., Zhang, X., Optical negative refraction in bulk metamaterials of nanowires, Science 321(5891), 930 (2008).Google Scholar
Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C. M., Negative refraction by photonic crystals, Nature 423, 604605 (2003).Google Scholar
Zhang, C., Cui, T. J., Negative reflections of electromagnetic waves in a strong chiral medium, Applied Physics Letters 91, 194101 (2007).Google Scholar
Yang, X. M., Zhou, X. Y., Cheng, Q., Ma, H. F., Cui, T. J., Diffuse reflections by randomly gradient index metamaterials, Optical Letters 35(6),808810.CrossRefGoogle Scholar
Lee, S. H., Park, C. M., Seo, Y. M., Kim, C. K., Reversed Doppler effect in double negative metamaterials, Phys. Rev. Lett. 81, 241102 (2010).Google Scholar
Cheng, Q., Cui, T. J., Jiang, W. X., Cai, B. G., Reversed Doppler effect in double negative metamaterials, New. J. Phys. 12, 063006 (2010).Google Scholar
Narimanov, E. E., Kildishev, A. V., Optical black hole: Broadband omnidirectional light absorber, Appl. Phys. Lett. 95, 041106 (2009).CrossRefGoogle Scholar
Ma, H. F., Cui, T. J., Three-dimensional broadband and broad-angle transformation-optics lens, Nat. Commun. 1, 124 (2010).Google Scholar
Ziolkowski, R. W., Erentok, A., Metamaterial-based efficient electrically small antennas, IEEE Trans. Antenna & Propagat. 54(7), 2113–2130.Google Scholar
Ma, H. F., Chen, X., Chen, H. S., Yang, X. M., Jiang, W. X., Cui, T. J., Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials, Appl. Phys. Lett. 95, 094107 (2009).Google Scholar
Chen, X., Ma, H. F., Zhou, X. Y., Jiang, W. X., Cui, T. J., Three-dimensional broadband and high-directivity lens antenna made of metamaterials, J. Appl. Phys. 110, 044904 (2011).Google Scholar
Qi, M. Q., Tang, W. X., Cui, T. J., A broadband Bessel beam launcher using metamaterial lens, Sci. Rep. 5, 11732 (2015).Google Scholar
Cheng, Q., Ma, H. F., Cui, T. J., Broadband planar Luneburg lens based on complementary metamaterials, Appl. Phys. Lett. 95, 101901 (2009).Google Scholar
Zhou, B., Yang, Y., Cui, T. J., Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials, J. Appl. Phys. 110, 084908 (2011).Google Scholar
Mei, Z. L., Bai, J., Niu, T. M., Cui, T. J., A half Maxwell fish-eye lens antenna based on gradient-index metamaterials, IEEE Trans. Antenna & Propagat. 60(1), 398401 (2012).Google Scholar
Ma, H. F., Cai, B. G., Zhang, T. X., Yang, Y., Jiang, W. X., Cui, T. J., Three-dimensional gradient-index materials and their applications in microwave lens antennas, IEEE Trans. Antenna & Propagat. 61(5), 25612569 (2013).Google Scholar
Lin, X. Q., Cui, T. J., Chin, J. Y., Yang, X. M., Cheng, Q., Liu, R., Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens, Appl. Phys. Lett. 92, 131904 (2018).Google Scholar
Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., Padilla, W. J., Perfect metamaterial absorber, Phys. Rev. Lett. 100, 207402 (2008).Google Scholar
Liu, S., Chen, H. B., Cui, T. J., A broadband terahertz absorber using multi-layer stacked bars, Appl. Phys. Lett. 106, 151601 (2015).Google Scholar
Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., Fan, K., Zhang, X., Padilla, W. J., Averitt, R. D., Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization, Phys. Rev. B 78, 244103 (2008).CrossRefGoogle Scholar
Li, H., Yuan, L. H., Shen, X. P., Cheng, Q., Cui, T. J., Ultrathin multiband gigahertz metamaterial absorbers, J. Appl. Phys. 110, 014909 (2011).Google Scholar
Shen, X. P., Cui, T. J., Zhao, J., Ma, H. F., Jiang, W. X., Li, H., Polarization-independent wide-angle triple-band metamaterial absorber, Opt. Express 19(10),94019407 (2011).Google Scholar
Grady, N. K., Heyes, J. E., Chowdhury, D. R., Zeng, Y., Reiten, M. T., Azad, A. K., Taylor, A. J., Dalvit, D. A. R., Chen, H. T., Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340 (6138),13041307 (2013).CrossRefGoogle ScholarPubMed
Chin, J. Y., Lu, M., Cui, T. J., Metamaterial polarizers by electric-field-coupled resonators, Appl. Phys. Lett. 93, 251903 (2008).CrossRefGoogle Scholar
Ye, Y., He, S., 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity, Appl. Phys. Lett. 96, 203501 (2010).Google Scholar
Yang, X. M., Zhou, X. Y., Cheng, Q., Ma, H. F., Cui, T. J., Diffuse reflections by randomly gradient index metamaterials, Optics Letters 35(6), 808810 (2010).Google Scholar
Kildishev, A. V., Boltasseva, A., Shalaev, V. M., Planar photonics with metasurfaces, Science 339 (6125), 1232009 (2013).Google Scholar
Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., Gaburro, Z., Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333337 (2011).CrossRefGoogle ScholarPubMed
Khoo, E. H., Li, E. P., Crozier, K. B., Plasmonic wave plate based on subwavelength nanoslits, Optics Letters 36, 24982500 (2011).CrossRefGoogle ScholarPubMed
Zhao, Y., Alù, A., Manipulating light polarization with ultrathin plasmonic metasurfaces, Phys. Rev. B 84, 205428 (2011).Google Scholar
Pors, A., Nielsen, M. G., Eriksen, R. L., Bozhevolnyi, S. I., Broadband focusing flat mirrors based on plasmonic gradient metasurfaces, Nano Lett. 13, 829834 (2013).Google Scholar
Genevet, P., Yu, N., Aieta, F., Lin, J., Kats, M. A., Blanchard, R., Scully, M. O., Gaburro, Z., Capasso, F., Ultra-thin plasmonic optical vortex plate based on phase discontinuities, Appl. Phys. Lett. 100, 013101 (2012).Google Scholar
Liu, Y. and Zhang, X., Metasurfaces for manipulating surface plasmons, Appl. Phys. Lett. 103, 141101 (2013).Google Scholar
Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett. 12, 49324936 (2012).CrossRefGoogle ScholarPubMed
Munk, B. A., Frequency selective surfaces: Theory and design, Wiley, 2000.Google Scholar
Huang, J., Encinar, J. A., Introduction to Reflectarray antenna, Wiley, 2007.Google Scholar
Capolino, F., Part I: Super-resolution, Applications of metamaterials, in P. A. Belov, ed., Metamaterials handbook, Taylor & Francis, 2009 2.8–2.10.Google Scholar
Capolino, F., Theory and phenomena of metamaterials, in Metamaterials handbook, Taylor & Francis, 2009.Google Scholar
Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., Padilla, W. J., A metamaterial absorber for the terahertz regime: Design, fabrication and characterization, Opt. Express 16, 71817188 (2008).Google Scholar
Dayal, G., Ramakrishna, S. A., Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane, Opt. Express 22, 15104 (2014).Google Scholar
Liu, X. L., Starr, T., Starr, A. F., Padilla, W. J., Infrared spatial and frequency selective metamaterial with near-unity absorbance, Phys. Rev. Lett. 104, 207403 (2010).Google Scholar
Pu, M. B., Hu, C. G., Wang, M., Huang, C., Zhao, Z. Y., Wang, C. T., Feng, Q., Luo, X. G., Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Opt. Express 19, 17413 (2011).Google Scholar
Aydin, K., Ferry, V. E., Briggs, R. M., Atwater, H. A., Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Nat. Commun. 2, 517 (2011).Google Scholar
Yeo, W. G., Nahar, N. K., Sertel, K., Far‐IR multiband dual‐polarization perfect absorber for wide incident angles, Microwave Opt. Technol. Lett. 55, 632 (2013).Google Scholar
Fang, Z. Y., Zhen, Y. R., Fan, L. R., Zhu, X., Nordlander, P., Tunable wide-angle plasmonic perfect absorber at visible frequencies, Phys. Rev. B 85, 245401 (2012).Google Scholar
Ma, Y., Chen, Q., Grant, J., Saha, S. C., Khalid, A., Cumming, D. R. S., A terahertz polarization insensitive dual band metamaterial absorber, Opt. Lett. 36, 945947 (2011).Google Scholar
Wang, B. X., Zhai, X., Wang, G. Z., Huang, W. Q., Wang, L. L, A novel dual-band terahertz metamaterial absorber for a sensor application, J. Appl. Phys. 117, 014504 (2015).Google Scholar
Liu, S., Zhuge, J. C., Ma, S. J., Chen, H. B., Bao, D., He, Q., Zhou, L., Cui, T. J., A bi-layered quad-band metamaterial absorber at terahertz frequencies, J. Appl. Phys. 118, 245304 (2015).Google Scholar
Yahiaoui, R., Guillet, J. P., Miollis, F. D., Mounaix, P., Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications, Optics Letters 38, 49884990 (2013).Google Scholar
Shen, X. P., Yang, Y., Zang, Y., Gu, J. Q., Han, J. G., Zhang, W. L., Cui, T. J., Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation, Appl. Phys. Lett. 101, 154102 (2012).CrossRefGoogle Scholar
Zhu, J. F., Ma, Z. F., Sun, W. J., Ding, F., He, Q., Zhou, L., Ma, Y. G., Ultra-broadband terahertz metamaterial absorber, Appl. Phys. Lett. 105, 021102 (2014).Google Scholar
Grant, J., Ma, Y., Saha, S., Khalid, A., Cumming, D. R. S., Polarization insensitive, broadband terahertz metamaterial absorber, Optics Letters 36, 34763478 (2011).Google Scholar
Yu, N. F., Aieta, F., Genevet, P., Kats, M. A., Gaburro, Z., Capasso, F., Broadband, A, Background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett. 12, 63286333 (2012).Google Scholar
Yu, N., Genevet, P., Aieta, F., Kats, M., Blanchard, R., Aoust, G., Tetienne, J. P., Gaburro, Z., Capasso, F., Flat optics: Controlling wavefronts with optical antenna metasurfaces, IEEE J. Select. Topics Quantum Electron. 19, 4700423 (2013).Google Scholar
Blanchard, R., Aoust, G., Genevet, P., Yu, N., Kats, M. A., Gaburro, Z., Capasso, F., Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Phys. Rev. B 85, 155457 (2012).Google Scholar
Kats, M., Genevet, P., Aoust, G., Yu, N., Blanchard, R., Aieta, F., Gaburro, Z., Capasso, F., Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy, Proc. Natl Acad. Sci. USA 109, 1236412368 (2012).Google Scholar
Aieta, F., Kabiri, A., Genevet, P., Yu, N., Kats, M. A., Gaburro, Z., Capasso, F., Reflection and refraction of light from metasurfaces with phase discontinuities, J. Nanophoton. 6, 063532 (2012).Google Scholar
Yang, Y. M., Wang, W. Y., Moitra, P., Kravchenko, I. I., Briggs, D. P., Valentine, J., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14, 13941399 (2014).Google Scholar
Xie, Z. W., Wang, X. K., Ye, J. S, Feng, S. F., Sun, W. F., Akalin, T., Zhang, Y., Spatial terahertz modulator, Sci. Rep. 3, 3347 (2013).Google Scholar
Chen, W. T., Yang, K. Y., Wang, C. M., Huang, Y. W., Sun, G., Chiang, I., Liao, C. Y., Hsu, W. L., Lin, H. T., Sun, S. L., Zhou, L., Liu, A. Q., Tsai, D. P., High-efficiency broadband meta-hologram with polarization-controlled dual images, Nano Lett. 14, 225230 (2014).CrossRefGoogle ScholarPubMed
Ling, X. H., Liu, H., Teng, J. H., Danner, A., Zhang, S., Qiu, C. W., Visible-frequency metasurface for structuring and spatially multiplexing optical vortices, Adv. Mater. 28, 25332539 (2016).Google Scholar
Huang, L. L., Chen, X. Z., Mühlenbernd, H., Zhang, H., Chen, S. M.. Bai, B. F., Tan, Q. F., Jin, G. F., Cheah, K. W., Qiu, C. W., Li, J. S., Zentgraf, T., Zhang, S., Three-dimensional optical holography using a plasmonic metasurface, Nat. Commun. 4, 2808 (2013).Google Scholar
Montelongo, Y., Tenorio, J. O. T., Williams, C., Zhang, S., Milne, W. I., Wilkinson, T. D., Plasmonic nanoparticle scattering for color holograms, Proc. Natl. Acad. Sci. 111, 1267912683 (2014).Google Scholar
Ye, W. M., Zeuner, F., Li, X., Reineke, B., He, S., Qiu, C. W., Liu, J., Wang, Y. T., Zhang, S., Zentgraf, T., Spin and wavelength multiplexed nonlinear metasurface holography, Nat. Commun. 7, 11930 (2016).Google Scholar
Ma, Z. J., Hanham, S. M., Allbella, P., Ng, B., Lu, H. T., Gong, Y. D., Maier, S. A., Hong, M. H., Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photon. 3, 10101018 (2016).Google Scholar
Khorasaninejad, M., Chen, W. T., Devlin, R. C., Oh, J., Zhu, A. Y., Capasso, F., Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science 352, 11901194 (2016).Google Scholar
Tseng, M. L., Hsiao, H.-H., Chu, C. H., Chen, M. K., Sun, G., Liu, A-Q, Tsai, D. P., Metalenses: advances and applications, Adv. Opt. Mater. 6(18), 1800554 (2019).Google Scholar
Wang, S., Wu, P. C., Su, V.-C., Lai, T.-C., Chen, M.-K., Kuo, H. Y., Chen, B. H., Chen, Y. H., Huang, T.-T., Wang, J.-H., Lin, R.-M., Kuan, C.-H., Li, T., Wang, Z., Zhu, S., Tsai, D. P., A broadband achromatic metalens in the visible, Nat. Nanotech. 13(3), 227 (2018).Google Scholar
Zang, W., Yuan, Q., Chen, R., Li, L., Li, T., Zou, X., Zhang, G., Chen, Z., Wang, S., Wang, Z., Zhu, S. N., Chromatic dispersion manipulation based on metalenses, Adv. Mater. 1904935 (2019).Google Scholar
Bomzon, Z., Kleiner, V., Hasman, E., Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings, Appl. Phys. Lett. 79, 15871589 (2001).CrossRefGoogle Scholar
Bomzon, Z, Kleiner, V, Hasman, E., Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings, Optics Letters 26, 14241426 (2001).Google Scholar
Monticone, F., Estakhri, N. M., Alù, A., Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110, 203903 (2013).Google Scholar
Pfeiffer, C., Grbic, A., Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets, Phys. Rev. Lett. 110, 197401 (2013).Google Scholar
Schelkunoff, S. A., Some equivalence theorems of electromagnetics and their application to radiation problems, Bell Syst. Tech. J. 15, 92112 (1936).Google Scholar
Alù, A., Mantle cloak: Invisibility induced by a surface, Phys. Rev. B 80, 245115 (2009).Google Scholar
Chen, P.-Y., Alù, A., Mantle cloaking using thin patterned metasurfaces, Phys. Rev. B 84, 205110 (2011).Google Scholar
Chen, P.-Y., Argyropoulos, C., Alù, A., Broadening the cloaking bandwidth with non-Foster metasurfaces, Phys. Rev. Lett. 111, 233001 (2013).Google Scholar
Liu, S., Xu, H. X., Zhang, H. C., Cui, T. J., Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. Opt. Express 22, 1340313417 (2014).Google Scholar
Liu, S., Zhang, H. C., Xu, H. X., Cui, T. J., Nonideal ultrathin mantle cloak for electrically large conducting cylinders. Journal of the Optical Society of America A 31, 20752082 (2014).Google Scholar
Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M., Smith, D. R., Infrared metamaterial phase holograms. Nat. Mater. 11, 450454 (2012).Google Scholar
Ni, X. J., Kildishev, A. V., Shalaev, V. M., Metasurface holograms for visible light, Nat. Commun. 4, 2807 (2013).Google Scholar
Zheng, G., Muhlenbernd, H., Kenney, M., Li, G., Zentgraf, T., Zhang, S., Metasurface holograms reaching 80% efficiency, Nat. Nanotechnology, 10, 308312 (2015).Google Scholar
Huang, Y. W., Chen, W. T., Tsai, W. Y., Wu, P. C., Wang, C. M., Sun, G., Tsai, D. P., High-efficiency broadband meta-hologram with polarization-controlled dual images, aluminum plasmonic multicolor meta-hologram, Nano Lett. 15, 31223127 (2015).Google Scholar
Huang, L., Muhlenbernd, H., Li, X., Song, X., Bai, B., Wang, Y., Zentgraf, T., Broadband hybrid holographic multiplexing with geometric metasurfaces, Adv. Mat. 27, 64446449 (2015).Google Scholar
Wong, H., Cheah, K. W., Pun, E. Y. B., Zhang, S., Chen, X. Z., Helicity multiplexed broadband metasurface holograms, Nat. Commun. 6, 8241 (2015).Google Scholar
Fang, X., Ren, H., Gu, M., Orbital angular momentum holography for high-security encryption, Nat. Photon. 14(12), 102108 (2020).CrossRefGoogle Scholar
Minovich, A., Neshev, D. N., Powell, D. A., Shadrivov, I. V., Kivshar, Y. S., Tunable fishnet metamaterials infiltrated by liquid crystals, Appl. Phys. Lett. 96, 193103 (2010).Google Scholar
Decker, M., Kremers, C., Minovich, A., Staude, I., Miroshnichenko, A. E., Chigrin, D., Neshev, D. N., Jagadish, C., Kivshar, Y. S., Electro-optical switching by liquid-crystal controlled metasurfaces, Opt. Express 21, 88798885 (2013).Google Scholar
Kats, M. A., Blanchard, R., Genevet, P., Yang, Z., Qazilbash, M. M., Basov, D. N., Ramanathan, S., Capasso, F., Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material, Optics Letters 38, 368370 (2013).Google Scholar
Biener, G., Niv, A., Kleiner, V., Hasman, E., Geometrical phase image encryption obtained with space-variant subwavelength gratings, Optics Letters 30, 10961098 (2005).Google Scholar
Yirmiyahu, Y., Niv, A., Biener, G., Kleiner, V., Hasman, E., Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam-Berry phase optical elements, Optics Letters 31, 32523254 (2006).Google Scholar
Zhu, W. M., Liu, A. Q., Bourouina, T., et.al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun. 3, 1274 (2012).Google Scholar
Ou, J. Y., Plum, E., Jiang, L., Zheludev, N. I.. Reconfigurable photonic metamaterials, Nano. Lett. 11, 2142 (2011).Google Scholar
Lapine, M., Shadrivov, I. V., Powell, D. A., Kivshar, Y. S.. Magnetoelastic metamaterials, Nat. Mater. 11, 30 (2012).Google Scholar
Zhang, J., Macdonald, K. F., Zheludev, N. I.. Nonlinear dielectric optomechanical metamaterials. Light: Sci. Appl. 2, e96 (2013).Google Scholar
Kuzyk, A., Schreiber, R., Zhang, H., et al., Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 826866 (2014).Google Scholar
Biener, G., Niv, A., Kleiner, V., Hasman, E., Space-variant polarization scrambling for image encryption obtained with subwavelength gratings, Opt. Commun. 261, 512 (2006).Google Scholar
Kasirga, T. S., Ertas, Y. N., Bayindir, M., Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102 (2009).CrossRefGoogle Scholar
Klein, M. W., Enkrich, C., Wegener, M., Linden, S., Second-harmonic generation from magnetic metamaterials, Science 313, 502504 (2006).Google Scholar
Valev, V. K., Silhanek, A. V., Verellen, N., Gillijns, W., van Dorpe, P., Aktsipetrov, O. A., Vandenbosch, G. A. E., Moshchalkov, V. V., Verbiest, T., Asymmetric optical second-harmonic generation from chiral-shaped gold nanostructures, Phys. Rev. Lett. 104, 127401 (2010).Google Scholar
Husu, H., Canfield, B. K., Laukkanen, J., Bai, B., Kuittinen, M., Turunen, J., Kauranen, M., Chiral coupling in gold nanodimers, Appl. Phys. Lett. 93, 183115 (2008).Google Scholar
Chen, P.-Y., Argyropoulos, C., Alù, A., Enhanced nonlinearities using plasmonic nanoantennas, Nanophotonics 1, 221233 (2012).Google Scholar
Lapine, M., Shadrivov, I. V., Kivshar, Y. S., Nonlinear metamaterials, Rev. Mod. Phys. 86, 10931123 (2014).Google Scholar
Yao, Y., Kats, M. A., Genevet, P., Yu, N. F., Song, Y., Kong, J., Capasso, F., Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13, 12571264 (2013).Google Scholar
Feng, Z., Wang, Y, Schlather, A. E., Liu, Z., Ajayan, P. M., de Abajo, F. J. G., Norlander, P., Zhu, X., Halas, N. J., Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14, 299304 (2014).CrossRefGoogle Scholar
Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y, Freitag, M., Zhu, W., Avouris, P., Xia, F., Tunable infrared plasmonic devices using graphene/insulator stacks, Nature Nanotechnol. 7, 330334 (2012).Google Scholar
Thongrattanasiri, S., Koppens, F. H. L, de Abajo, F. J. G., Complete optical absorption in periodically patterned graphene, Phys. Rev. Lett. 108, 047401 (2012).Google Scholar
van Nieuwstadt, J. A. H., Sandtke, M., Harmsen, R. H., Segerink, F. B., Prangsma, J. C., Enoch, S., Kuipers, L., Strong modification of the nonlinear optical response of metallic subwavelength hole arrays, Phys. Rev. Lett. 97, 146102 (2006).Google Scholar
Chen, H.-T., Padilla, W. J., Cich, M. J., Azad, A. K., Averitt, R. D., Taylor, A. J., A metamaterial solid-state terahertz phase modulator, Nat. Photon. 3, 148141 (2009).Google Scholar
Chan, W. L., Chen, H. T., Taylor, A. J., Brener, I., Cich, M. J., Mittleman, D. M., A spatial light modulator for terahertz beams, Appl. Phys. Lett. 94, 213511 (2009).Google Scholar
Smith, D. R., Schultz, S., Markoš, P, Soukoulis, C. M., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B 65, 195104 (2002).Google Scholar
Liu, R. P., Cui, T. J., Huang, D., Zhao, B., Smith, D. R., Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory, Phys. Rev. E 76, 026606 (2007).Google Scholar
Holloway, C. L., Kuester, E. F., Gordon, J. A., O’Hara, J., Booth, J., Smith, D. R., An overview of the theory and applications of metasurfaces, the two-dimensional equivalents of metamaterials, IEEE Trans. Antennas Propag. Mag. 54, 1035 (2012).Google Scholar
Cui, T. J., Qi, M. Q., Wan, X., Zhao, J., Cheng, Q., Lights coding metamaterials, digital metamaterials and programmable metamaterials, Light: Sci. Appl. 3, e214 (2014).Google Scholar
Nayeri, P., Yang, F., Elsherbeni, A., Beam-scanning reflectarray antennas: A technical overview and state of the art, IEEE Trans. Antennas Propag. Mag. 57, 3247 (2015).Google Scholar
Nayeri, P., Yang, F., Elsherbeni, A., Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance, IEEE Trans. Antennas Propag. 61, 45884597 (2013).Google Scholar
Cui, T. J., Liu, S., Zhang, L., Information metamaterials and metasurfaces, J. Mater. & Chem. C 5, 36443668 (2017).Google Scholar
Liu, S., Cui, T. J., Concepts, working principles, and applications of coding and programmable metamaterials, Adv. Opt. Mater. 5(22), 1700624 (2017).Google Scholar
Gao, L. H., Cheng, Q., Yang, J., Ma, S. J., Zhao, J., Liu, S., Chen, H. B., He, Q., Jiang, W. X., Ma, H. F., Wen, Q. Y., Liang, L. J., Jin, B. B., Liu, W. W., Zhou, L., Yao, J. Q., Wu, P. H., Cui, T. J., Broadband diffusion of terahertz waves by multi-bit coding metasurfaces, Light: Sci. Appl. 2015, 4, e324 (2015).Google Scholar
Liang, L. J., Qi, M. Q., Yang, J., Shen, X. P., Zhai, J. Q., Xu, W. Z., Jin, B. B., Liu, W. W., Feng, Y. J., Zhang, C. H., Lu, H., Chen, H. T., Kang, L., Xu, W. W., Chen, J., Cui, T. J., Wu, P. H., Liu, S. G., Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials, Adv. Opt. Mater. 3, 13741380 (2015).Google Scholar
Liu, S., Noor, A., Du, L. L., Zhang, L., Xu, Q., Wang, K. L. T. Q., Tian, Z., Tang, W. X., Han, J. G., Zhang, W. L., Zhou, X. Y., Cheng, Q., Cui, T. J., Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces, ACS Photon. 3, 19681977 (2016).Google Scholar
Wang, Z. W., Zhang, Q., Zhang, K., Hu, G. K., Tunable digital metamaterial for broadband vibration isolation at low frequency, Adv. Mater. 28, 98579861 (2016).Google Scholar
Xie, B. Y., Tang, K., Cheng, H., Liu, Z. Y., Chen, S. Q., Tian, J. G., Coding acoustic metasurfaces, Adv. Mater. 29, 1603507 (2016).Google Scholar
Xie, B. Y., Tang, H. C., Liu, Z. Y., Chen, S. Q., Tian, J. G., Multiband asymmetric transmission of airborne sound by coded metasurfaces, Phys. Rev. Appl. 7, 024010 (2017).Google Scholar
Saadat, S., Adnan, M., Mosallaei, H., Afshari, E., Composite metamaterial and metasurface integrated with non-foster active circuit elements: A bandwidth-enhancement investigation, IEEE Trans. Antennas Propag. 61, 12101218 (2013).Google Scholar
Barbuto, M., Monti, A., Bilotti, F., Toscano, A., Design of a non-foster actively loaded SRR and application in metamaterial-inspired components, IEEE Trans. Antennas Propag. Mag. 61, 12191227 (2012).Google Scholar
Hrabar, S., Krois, I., Bonic, I., Kiricenko, A., Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial, Appl. Phys. Lett. 102, 054108 (2013).Google Scholar
Elliott, R., Azimuthal surface waves on circular cylinders, Trans. IRE Profession. Group Antennas Propagat. 2, 7181 (1954).Google Scholar
Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopolous, N., Yablonovitch, E., High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theory Techn. 47, 20592074 (1999).Google Scholar
Liu, S., Cui, T. J., Zhang, L., Xu, Q., Wang, Q., Wan, X., Gu, J. Q., Tang, W. X., Qi, M. Q., Han, J. G., Zhang, W. L., Zhou, X. Y., Cheng, Q., Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams., Adv. Sci. 3, 1600156 (2016).Google Scholar
Liu, S., Cui, T. J., Flexible controls of scattering clouds using coding metasurfaces, Sci. Rep. 6, 37545 (2016).Google Scholar
Liu, S., Cui, T. J., Flexible controls of terahertz waves using coding and programmable metasurfaces, IEEE J. Sel. Top. Quantum Electron. 23, 112 (2016).Google Scholar
Moccia, M., Liu, S., Wu, R. Y., Castaldi, G., Andreone, A., Cui, T. J., Galdi, V.. Coding metasurfaces for diffuse scattering: Scaling laws, bounds, and sub-optimal design. Adv. Opt. Mater. 5, 1700455 (2017).Google Scholar
Padooru, Y. R., Yakovlev, A. B., Chen, P. Y., Alù, A., Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays, J. Appl. Phys. 112, 034907 (2012).Google Scholar
Rainwater, D., Kerkhoff, A., Melin, K., Soric, J., Moreno, G., Alù, A., Experimental verification of three-dimensional plasmonic cloaking in free-space, New J. Phys. 14, 013054 (2012).Google Scholar
Tang, K., Qiu, C., Lu, J., Ke, M., Liu, Z., Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits, J. Appl. Phys. 17, 024503 (2015).Google Scholar
Yang, Z., Gao, F., Shi, X., Lin, X., Gao, Z., Chong, Y., Zhang, B., Topological acoustics, Phys. Rev. Lett. 114, 114301(2015).Google Scholar
Xiao, M., Chen, W.-J., He, W.-Y., Chan, C. T., Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11, 920 (2015).Google Scholar
Khanikaev, A. B., Fleury, R., Mousavi, S. H., Alù, A., Topologically robust sound propagation in an angular momentum-biased graphene-like resonator lattice, Nat. Commun. 6, 8260 (2015).Google Scholar
Mousavi, S. H., Khanikaev, A. B., Wang, Z., Topologically protected elastic waves in phononic metamaterials, Nat. Commun. 6, 8682 (2015).CrossRefGoogle ScholarPubMed
Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., Sheng, P., Locally resonant sonic materials, Science 289, 17341736 (2000).Google Scholar
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater. 5, 452456 (2006).Google Scholar
Lakes, R. S., Advances in negative Poisson’s ratio materials, Adv. Mater. 5, 293296 (1993).Google Scholar
Bergamini, A., Delpero, T., de Simoni, L., di Lillo, L., Ruzzene, M., Ermanni, P., Phononic crystal with adaptive connectivity, Adv. Mater. 26, 13431347 (2014).Google Scholar
Zhu, R., Chen, Y. Y., Barnhart, M. V., Hu, G. K., Sun, C. T., Huang, G. L., Experimental study of an adaptive elastic metamaterial controlled by electric circuits, Appl. Phys. Lett. 108, 011905 (2016).Google Scholar
Casadei, F., Delpero, T., Bergamini, A., Ermanni, P., Ruzzene, M., Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials, J. Appl. Phys. 112, 064902 (2012).Google Scholar
Babaee, S., Viard, N., Wang, P., Fang, N. X., Bertoldi, K., Harnessing deformation to switch on and off the propagation of sound, Adv. Mater. 28, 16311635 (2016).Google Scholar
Wang, P., Casadei, F., Shan, S., Weaver, J. C., Bertoldi, K., Harnessing buckling to design tunable locally resonant acoustic metamaterials, Phys. Rev. Lett. 113, 014301 (2014).Google Scholar
Zhang, Q., Yan, D., Zhang, K., Hu, G., Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique, Sci. Rep. 5, 8936 (2015).Google Scholar
Zhang, Q., Zhang, K., Hu, G., Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique, Sci. Rep. 6, 22431 (2016).Google Scholar
Liu, S., Zhang, L., Yang, Q. L., Xu, Q., Yang, Y., Noor, A., Zhang, Q., Iqbal, S., Wan, X., Tian, Z., Tang, W. X., Cheng, Q., Han, J. G., Zhang, W. L., Cui, T. J., Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies, Adv. Opt. Mater. 4, 19651973 (2016).Google Scholar
Liu, L. X., Zhang, X. Q., Kenney, M., Su, X. Q., Xu, N. N., Ouyang, C. M., Shi, Y., Han, J. G., Zhang, W. L., Zhang, S., Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 50315036 (2014).Google Scholar
Zhang, X. Q., Tian, Z., Yue, W., Gu, J., Zhang, S., Hanand, J., Zhang, W., Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater. 2013, 25, 45674572.Google Scholar
Liu, S., Zhang, H. C., Zhang, L., Xu, Q., Yang, Q. L., Gu, J. Q., Ma, H. F., Jiang, W. X., Zhou, X. Y., Han, J. G., Zhang, W. L., Cheng, Q., Cui, T. J., Full-state controls of terahertz waves using tensor coding metasurfaces, ACS Appl. Mater. & Interfaces 9, 2150321514, (2017).Google Scholar
Sun, S. L., He, Q., Xiao, S. Y., Xu, Q., Li, X., Zhou, Lei, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11, 426431 (2011).Google Scholar
Yang, H. H., Yang, F., Xu, S. H., Mao, Y. L., Li, M. K., Cao, X. Y., Gao, J., A 1-bit 10 × 10 reconfigurable reflectarray antenna: design, optimization, and experiment, IEEE Trans. Antennas Propag. 64, 22462254 (2016).Google Scholar
Wan, X., Qi, M. Q., Chen, T. Q., Cui, T. J., Field-programmable beam reconfiguring based on digitally-controlled coding metasurface, Sci. Rep. 6, 20663 (2016).Google Scholar
Yang, H. H., Cao, X. Y., Yang, F., Gao, J., Xu, S. H., Li, M. K., Chen, X. B., Zhao, Y., Zheng, Y. J., Li, S. J., A programmable metasurface with dynamic polarization, scattering and focusing control, Sci. Rep. 6, 35692 (2016).Google Scholar
Kamoda, H., Iwasaki, T., Tsumochi, J., Kuki, T., Hashimoto, O., 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters, IEEE Trans. Antennas Propag. 59, 25242531 (2011).Google Scholar
Shannon, C. E., A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review 5, 355 (2001).Google Scholar
Cui, T. J., Liu, S., Li, L. L., Information entropy of coding metasurface, Light: Sci. Appl. 5, e16172 (2016).Google Scholar
Wu, R. Y., Shi, C. B., Liu, S., Wu, W., Cui, T. J.. Addition theorem for digital coding metamaterials, Adv. Opt. Mater. 1701236 (2018).Google Scholar
Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N., Sun, T., Kelly, K. F., Baraniuk, R. G., Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25, 8391 (2008).Google Scholar
Watts, C. M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D. R., Padilla, W. J., Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics. 8, 605609 (2014).Google Scholar
Lipworth, G., Mrozack, A., Hunt, J., Marks, D. L., Driscoll, T., Brady, D., Smith, D. R., Metamaterial apertures for coherent computational imaging on the physical layer. J. Opt. Soc. Am. A 30, 16031612 (2013).Google Scholar
Hunt, J, J. Gollub, T. Driscoll, et al. Metamaterial microwave holographic imaging system, J. Opt. Soc. Am. A 31, 2109 (2014).Google Scholar
Watts, C. M., Liu, X., Padilla, W. J., Metamaterial electromagnetic wave absorbers, Adv. Opt. Mater. 24, 98120 (2012).Google Scholar
Sensale-Rodriguez, B., Rafique, S., Yan, R., Zhu, M., Protasenko, V., Jena, D., Liu, L., Xing, H. L. G., Terahertz imaging employing graphene modulator arrays, Opt. Express, 21(2),23242330 (2013).Google Scholar
Li, Y. B., Li, L. L., Xu, B. B., Wu, W., Wu, R. Y., Wan, X., Cheng, Q., Cui, T. J., Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging, Sci. Rep. 6, 23731 (2015).Google Scholar
Li, L., Hurtado, M., Xu, F., Zhang, B. C., Jin, T., Cui, T. J., Stevanovic, M. N., Nehorai, A., A survey on the low-dimensional-model-based electromagnetic imaging, Foundations and Trends in Signal Processing 12(2),107199 (2018).Google Scholar
Walther, B., Helgert, C., Rockstuhl, C., et al. Spatial and spectral light shaping with metamaterials, Adv. Mater. 24, 63006304 (2012).Google Scholar
Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W., Zheludev, N. I., An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 30503054 (2013).Google Scholar
Wang, Q., Rogers, E. T. F., Gholipour, B., Wang, C. M., Yuan, G. H., Teng, J. H., Zheludev, N. I., Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photon. 10, 6065 (2016).Google Scholar
Kaplan, G., Aydin, K., Scheuer, J., Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide, Opt. Mater. Express 5, 2513 (2015).Google Scholar
Dicken, M. J., Aydin, K., Pryce, I. M., Sweatlock, L. A., Boyd, E. M., Walavalkar, S., Ma, J., Atwater, H. A., Frequency tunable near-infrared metamaterials based on VO2 phase transition, Opt. Express 17, 18330 (2009).Google Scholar
Tao, H., Strikwerda, A. C., Fan, K., Padilla, W. J., Zhang, X., Averitt, R. D., Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).Google Scholar
Ju, L., Geng, B. S., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H. A., Liang, X. G., Zettl, A., Shen, T. R., Wang, F., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630634 (2011).Google Scholar
Huang, Y.-W., Lee, H. W. H., Sokhoyan, R., Pala, R. A., Thyagarajan, K., Han, S., Tsai, D. P., Atwater, H. A., Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 53195325 (2016).Google Scholar
Li, L., Cui, T. J., Ji, W., Liu, S., Ding, J., Wan, X., Li, Y. B., Jiang, M., Qiu, C.-W., Zhang, S., Electromagnetic reprogrammable coding metasurface holograms, Nat. Commun. 8, 197 (2017).Google Scholar
Gerchberg, R. W., Saxton, W. O., A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 227246 (1972).Google Scholar
Zhao, J., Yang, X., Dai, J. Y., Cheng, Q., Li, X., Qi, N. H., Ke, J. C., Bai, G. D., Liu, S., Jin, S., Alu, A., Cui, T. J., Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems, National Science Review 6(2), 231238 (2019).Google Scholar
Silva, A., Monticone, F., Castaldi, G., Baldi, V. G., Alù, A., Engheta, N., Performing mathematical operations with metamaterials, Science, 343, 160163 (2014).Google Scholar
Shrekenhamer, D., Chen, W. C., Padilla, W. J., Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett. 110, 177403 (2013).Google Scholar
Liu, X., Padilla, W. J., Dynamic manipulation of infrared radiation with MEMS metamaterials, Adv. Opt. Mater. 1, 559562 (2013).Google Scholar
Shi, S. F., Zeng, B., Han, H. L., Hong, X., Tsai, H. Z., Zettl, A., Crommie, M. F., Wang, F., Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures, Nano Lett. 15, 372 (2014).Google Scholar
Liu, X., Gu, J. Q., Singh, R., Ma, Y. F., Zhu, J., Tian, Z., He, M. X., Han, J. G., Zhang, W. L., Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode, Appl. Phys. Lett. 100, 131101 (2012).Google Scholar
Gu, J., Singh, R., Liu, X. J., Zhang, X. Q., Ma, Y. F., Zhang, S., Maier, S. A., Tian, Z., Azad, A. K., Chen, H. T., Taylor, A. J., Han, J. G., Zhang, W. L., Active control of electromagnetically induced transparency analog in terahertz metamaterials, Nat. Commun. 3, 1151 (2012).Google Scholar
Chen, H. T., O’Hara, J. F., Azad, A. K., Taylor, A. J., Averitt, R. D., Shrekenhamer, D. B., Padilla, W. J., Experimental demonstration of frequency-agile terahertz metamaterials, Nat. Photon. 2, 295298 (2008).Google Scholar
Chen, H. T., Yang, H., Singh, R., O’Hara, J. F., Azad, A. K., Trugman, S. A., Jia, Q. X., Taylor, A. J., Tuning the resonance in high-temperature superconducting terahertz metamaterials, Phys. Rev. Lett. 105, 247402 (2010).Google Scholar
Zhu, W. M., Song, Q. H., Yan, L. B., Zhang, W., Wu, P. C.. Chin, L. K., Cai, H., Tsai, D. P., Shen, Z. X., Deng, T. W., Ting, S. K., Gu, Y. D., Lo, G. Q., Kwong, D. L., Yang, Z. C., Huang, R., Liu, A. Q., Zheludev, N., A flat lens with tuneable phase gradient by using random access reconfigurable metamaterial, Adv. Mater. 27, 47394743 (2015).Google Scholar
Wu, P. C., Zhu, W. M., Shen, Z. X., Chong, P. H. J., Ser, W.. Tsai, D. P., Liu, A. Q., Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5, 1600938 (2017).CrossRefGoogle Scholar
Yan, L. B., Zhu, W. M., Wu, P. C., Cai, H., Gu, Y. D., Chin, L. K., Shen, Z. X., Chong, P. H. J., Yang, Z. C., Ser, W., Tsai, D. P., Liu, A. Q., Adaptable metasurface for dynamic anomalous reflection, Appl. Phys. Lett. 110, 201904 (2017).Google Scholar
Yang, X., Xu, S. H., Yang, F., Li, M. K., Hou, Y. Q., Jiang, S. D., Liu, L, A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements, IEEE Trans. Antennas Propag. Mag. 65, 39593966 (2017).Google Scholar
Fusco, V. F., Mechanical beam scanning reflectarray, IEEE Trans. Antennas Propag. 53, 38423844 (2005).Google Scholar
Subbarao, B., Srinivasan, V., Fusco, V. F., Cahill, R., Element suitability for circularly polarised phase agile reflectarray applications, IEE Proc.-Microw., Antennas Propag. 151, 287292 (2004).Google Scholar
Srinivasan, V., Fusco, V. F., Circularly polarised mechanically steerable reflectarray, IEE Proc.-Microw. Antennas Propag. 152, 511514 (2005).Google Scholar
Ou, J. Y., Plum, E., Zhang, J. F., Zheludev, N. I., An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotech. 8, 252 (2013).Google Scholar
Zhang, L., Chen, X. Q., Liu, S., Zhang, Q., Zhao, J., Dai, J. Y., Bai, G. D., Wan, X., Cheng, Q., Castaldi, G., Galdi, V., Cui, T. J., Space-time-coding digital metasurfaces, Nat. Commun. 9, 4334 (2018).Google Scholar
Zhang, L., Wang, Z. X., Shao, R. W., Shen, J. L., Chen, X. Q., Wan, X., Cheng, Q., Cui, T. J., Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface, IEEE Transactions on Antennas and Propagation 67, DOI 10.1109/TAP.2019.2955219 (2019).Google Scholar
Zhang, L., Chen, X. Q., Shao, R. W., Dai, J. Y., Cheng, Q., Castaldi, G., Galdi, V., Cui, T. J., Breaking reciprocity with space-time-coding digital metasurfaces, Adv. Mater. 31, 1904069 (2019).Google Scholar
Bao, L., Ma, Q., Bai, G. D., Jing, H. B., Wu, R. Y., Yang, C., Wu, J., Fu, X., Cui, T. J., Design of digital coding metasurfaces with independent controls of phase and amplitude responses, Appl. Phys. Lett. 113, 063502 (2018).Google Scholar
Luo, J., Ma, Q., Jing, H. B., Bai, G. D., Wu, R. Y., Bao, L., Cui, T. J., 2-bit amplitude-modulated coding metasurfaces based on indium tin oxide films, J. Appl. Phys. 126, 113102 (2019).Google Scholar
Wu, R. Y., Zhang, L., Bao, L., Wu, L. W., Ma, Q., Bai, G. D., Wu, H. T., Cui, T. J., Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations, Adv. Opt. Mater. 7, 1801429 (2019).Google Scholar
Bao, L., Wu, R. Y., Fu, X., Ma, Q., Bai, G. D., Cui, T. J., Multi-beam forming and controls by metasurface with phase and amplitude modulations, IEEE Transactions on Antennas and Propagation 67(10),66806685 (2019).Google Scholar
Chen, L., Ma, Q., Jing, H. B., Cui, H. Y., Liu, Y., Cui, T. J., Spatial-energy digital coding metasurface based on active amplifier, Phys. Rev. Appl. 11, 054051 (2019).Google Scholar
Luo, Z., Chen, M. Z., Wang, Z. X., Zhou, L., Wang, Q., Li, Y. B., Cheng, Q., Ma, H. F., Cui, T. J., Digital nonlinear metasurface with highly customizable nonreciprocity, Adv. Funct. Mater. 29, 1906635 (2019).Google Scholar
Ma, Q., Chen, L., Jing, H. B., Hong, Q. R., Cui, H. Y., Liu, Y., Li, L., Cui, T. J., Controllable and programmable nonreciprocity based on detachable digital coding metasurface Adv. Opt. Mater. 7, 1901285 (2019).Google Scholar
Luo, Z., Wang, Q., Zhang, X. G., Wu, J. W., Dai, J. Y., Zhang, L., Wu, H. T., Zhang, H. C., Ma, H. F., Cheng, Q., Cui, T. J., Intensity-dependent metasurface with digitally-reconfigurable distribution of nonlinearity, Adv. Opt. Mater. 7, 1900792 (2019).Google Scholar
Li, L., Ruan, H., Liu, C., Li, Y., Shuang, Y., Alù, A., Qiu, C.-W., Cui, T. J., Machine-learning reprogrammable metasurface imager, Nat. Commun. 10, 1082 (2019).Google Scholar
Li, L., Shuang, Y., Ma, Q., Li, H., Zhao, H., Wei, M., Liu, C., Hao, C., Qiu, C. W., Cui, T. J., Intelligent metasurface imager and recognizer, Light: Sci. Appl. 8, 97 (2019).Google Scholar
Li, H. Y., Zhao, H. T., Wei, M. L., et al. Intelligent electromagnetic sensing with learnable data acquisition and processing, Patterns 1, 100006, (2020).Google Scholar
Ma, Q., Bai, G. D., Jing, H. B., Yang, C., Li, L., Cui, T. J., Smart metasurface with self-adaptively reprogrammable functions, Light: Sci. Appl. 8, 98 (2019).Google Scholar
Cui, T. J., Liu, S., Bai, G. D., Ma, Q., Direct transmission of digital message via programmable coding metasurface. Research 2584509 (2019).Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Information Metamaterials
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Information Metamaterials
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Information Metamaterials
Available formats
×