Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-cmjwd Total loading time: 0 Render date: 2025-12-07T23:54:45.709Z Has data issue: false hasContentIssue false

New Approaches to Assessing Behavioral and Brain Synchrony in Infant-Parent Dyads

Published online by Cambridge University Press:  21 November 2025

Teresa Wilcox
Affiliation:
Florida Atlantic University
Jacqueline Stotler Hammack
Affiliation:
Florida Atlantic University
Lyndsey Riera-Gomez
Affiliation:
Florida Atlantic University
Mini Sharma
Affiliation:
Ariel University
Hila Gvirts
Affiliation:
Ariel University

Summary

Historically, infant–parent synchrony has been measured using methods that provide a global assessment of interpersonal synchrony, representing the quality of dyadic interactions. These approaches have illuminated much about synchrony as a broad construct but lack granular details on the temporal dynamics of these interactions. This Element introduces technologically advanced methods for assessing brain and behavior that can offer detailed insights into the dynamic temporal structure of infant–parent social exchanges. These advancements will significantly enhance our understanding of the bidirectional processes that underpin early emerging dyadic exchanges and how these vary across time and context.
Get access

Information

Type
Element
Information
Online ISBN: 9781009631174
Publisher: Cambridge University Press
Print publication: 18 December 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Abbasi, H., Mollet, S. R., Williams, S. A. et al. (2023). Deep-learning for automated markerless tracking of infants’ general movements. International Journal of Information Technology, 15(8), 40734083. https://doi.org/10.1007/s41870-023-01497-z.CrossRefGoogle Scholar
Abney, D. H., daSilva, E. B., & Bertenthal, B. I. (2021). Associations between infant–mother physiological synchrony and 4‐and 6‐month‐old infants’ emotion regulation. Developmental Psychobiology, 63(6), e22161. https://doi.org/10.1002/dev.22161.CrossRefGoogle ScholarPubMed
Airaksinen, M., Gallen, A., Kivi, A. et al. (2022). Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants. Communications Medicine, 2(1), 69, 114. https://doi.org/10.1038/s43856-022-00131-6.CrossRefGoogle ScholarPubMed
Airaksinen, M., Räsänen, O., Ilén, E. et al. (2020). Automatic posture and movement tracking of infants with wearable movement sensors. Scientific Reports, 10(1), 169. https://doi.org/10.1038/s41598-019-56862-5.CrossRefGoogle ScholarPubMed
Aksan, N., Kochanska, G., & Ortmann, M. R. (2006). Mutually responsive orientation between parents and their young children: Toward methodological advances in the science of relationships. Developmental Psychology, 42(5), 833848. https://doi.org/10.1037/0012-1649.42.5.833.CrossRefGoogle ScholarPubMed
Alghowinem, S., Chen, H., Breazeal, C., & Park, H. W. (2021, December). Body gesture and head movement analyses in dyadic parent-child interaction as indicators of relationship. In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 15. https://doi.org/10.1109/FG52635.2021.9666983.CrossRefGoogle Scholar
Altmann, U. (2011). Investigation of movement synchrony using windowed cross-lagged regression. In Analysis of Verbal and Nonverbal Communication and Enactment. The Processing Issues: COST 2102 International Conference, Budapest, Hungary, September 7–10, 2010, Revised Selected Papers (pp. 335-345). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25775-9_31.CrossRefGoogle Scholar
Atzil, S., Hendler, T., & Feldman, R. (2014). The brain basis of social synchrony. Social Cognitive and Affective Neuroscience, 9(8), 11931202. https://doi.org/10.1093/scan/nst105.CrossRefGoogle ScholarPubMed
Azhari, A., Bizzego, A., Balagtas, J. P. M., Leng, K. S. H., & Esposito, G. (2022). Asymmetric prefrontal cortex activation associated with mutual gaze of mothers and children during shared play. Symmetry, 14(5), 998. https://doi.org/10.3390/sym14050998.CrossRefGoogle Scholar
Azhari, A., Bizzego, A., & Esposito, G. (2021). Father-child dyads exhibit unique inter-subject synchronization during co-viewing of animation video stimuli. Social Neuroscience, 16(5), 522533. https://doi.org/10.1080/17470919.2021.1970016.CrossRefGoogle ScholarPubMed
Azhari, A., Bizzego, A., & Esposito, G. (2022). Parent–child dyads with greater parenting stress exhibit less synchrony in posterior areas and more synchrony in frontal areas of the prefrontal cortex during shared play. Social Neuroscience, 17(6), 520531. https://doi.org/10.1080/17470919.2022.2162118.CrossRefGoogle ScholarPubMed
Azhari, A., Leck, W. Q., Gabrieli, G. et al. (2019). Parenting stress undermines mother-child brain-to-brain synchrony: A hyperscanning study. Scientific Reports, 9(1), 11407. https://doi.org/10.21979/N9/CTR0YX.CrossRefGoogle ScholarPubMed
Balconi, M., & Vanutelli, M. E. (2018). Functional EEG connectivity during competition. BMC Neuroscience, 19(1), 63. https://doi.org/10.1186/s12868-018-0464-6.CrossRefGoogle ScholarPubMed
Barreto, C., Bruneri, G. D. A., Brockington, G., Ayaz, H., & Sato, J. R. (2021). A new statistical approach for fNIRS hyperscanning to predict brain activity of preschoolers’ using teacher’s. Frontiers in Human Neuroscience, 15, 622146. https://doi.org/10.3389/fnhum.2021.622146.CrossRefGoogle ScholarPubMed
Bell, M. A. (2020). Mother-child behavioral and physiological synchrony. Advances in Child Development and Behavior, 58, 163188. Elsevier. https://doi.org/10.1016/bs.acdb.2020.01.006.Google ScholarPubMed
Bente, G., & Novotny, E. (2020). Bodies and minds in sync: Forms and functions of interpersonal synchrony in human interaction. In The Handbook of Communication Science and Biology (pp. 416428). Routledge.CrossRefGoogle Scholar
Bernieri, F. J., Reznick, J. S., & Rosenthal, R. (1988). Synchrony, pseudosynchrony, and dissynchrony: Measuring the entrainment process in mother-infant interactions. Journal of Personality and Social Psychology, 54(2), 243253 https://doi.org/10.1037/0022-3514.54.2.243.CrossRefGoogle Scholar
Bertenthal, B. I., & Clifton, R. K. (1998). Perception and action. In Damon, W. (Ed.), Handbook of Child Psychology: Vol. 2. Cognition, Perception, and Language (pp. 51102). John Wiley & Sons.Google Scholar
Bevilacqua, D., Davidesco, I., Wan, L. et al. (2019). Brain-to-brain synchrony and learning outcomes vary by student–teacher dynamics: Evidence from a real-world classroom electroencephalography study. Journal of Cognitive Neuroscience, 31(3), 401411. https://doi.org/10.1162/jocn_a_01274.CrossRefGoogle ScholarPubMed
Bi, X., Cui, H., & Ma, Y. (2023). Hyperscanning Studies on Interbrain Synchrony and Child Development: A Narrative Review. Neuroscience, 530, 3845. https://doi.org/j.neuroscence.2023.08.035.CrossRefGoogle ScholarPubMed
Bizzego, A., Azhari, A., & Esposito, G. (2022). Assessing computational methods to quantify mother-child brain synchrony in naturalistic settings based on fNIRS signals. Neuroinformatics, 20(2), 427436. https://doi.org/10.1007/s12021-021-09558-z.CrossRefGoogle ScholarPubMed
Bizzego, A., Battisti, A., Gabrieli, G., Esposito, G., & Furlanello, C. (2019). pyphysio: A physiological signal processing library for data science approaches in physiology. SoftwareX, 10, https://doi.org/10.1016/j.softx.2019.100287.CrossRefGoogle Scholar
Boas, D. A., Dale, A. M., & Franceschini, M. A. (2004). Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage, 23, S275S288. https://doi.org/10.1016/j.neuroimage.2004.07.011.CrossRefGoogle ScholarPubMed
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172186. https://doi.org/10.1109/TPAMI.2019.2929257.CrossRefGoogle ScholarPubMed
Chen, M., Minn Chow, S., Hammal, Z., Messinger, D. S., & Cohn, J. F. (2020). A person- and time-varying vector autoregressive model to capture interactive infant-mother head movement dynamics. Multivariate Behavioral Research, 56(5), 739767. https://doi.org/10.1080/00273171.2020.1762065.CrossRefGoogle ScholarPubMed
Coburn, S. S., Crnic, K. A., & Ross, E. K. (2015). Mother–infant dyadic state behaviour: Dynamic systems in the context of risk. Infant and Child Development, 24(3), 274297. https://doi.org/10.1002/icd.1913.CrossRefGoogle Scholar
Cornejo, C., Cuadros, Z., Morales, R., & Paredes, J. (2017). Interpersonal coordination: Methods, achievements, and challenges. Frontiers in Psychology, 8, 1685. https://doi.org/10.3389/fpsyg.2017.01685.CrossRefGoogle ScholarPubMed
Cuadros, Z., Carré, D., Hurtado, E., & Cornejo, C. (2021). Interpersonal coordination in three- year-old children: Functions, morphology, and temporality. Acta Psychologica, 218, 103351. https://doi.org/10.1016/j.actpsy.2021.103351.CrossRefGoogle ScholarPubMed
Cuadros, Z., Hurtado, E., & Cornejo, C. (2019). Measuring dynamics of infant-adult synchrony through mocap. Frontiers in Psychology, 10, 2839. https://doi.org/10.3389/fpsyg.2019.02839.CrossRefGoogle ScholarPubMed
Cuadros, Z., Hurtado, E., & Cornejo, C. (2020). Infant-adult synchrony in spontaneous and nonspontaneous interactions. PLOS ONE, 15(12), e0244138. https://doi.org/10.1371/journal.pone.0244138.CrossRefGoogle ScholarPubMed
Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 24302437. https://doi.org/10.1016/j.neuroimage.2011.09.003.CrossRefGoogle ScholarPubMed
Czeszumski, A., Eustergerling, S., Lang, A. et al. (2020). Hyperscanning: A Valid method to study neural inter-brain underpinnings of social interaction. Frontiers in Human Neuroscience, 14, 117. https://doi.org/10.3389/fnhum.2020.00039.CrossRefGoogle ScholarPubMed
Dahan, A., Dubnov, Y. A., Popkov, A. Y., Gutman, I., & Probolovski, H. G. (2020). Brief report: Classification of autistic traits according to brain activity recorded by fNIRS using ε-complexity coefficients. Journal of Autism and Developmental Disorders, 111. https://doi.org/10.1007/s10803-020-04793-w.CrossRefGoogle Scholar
Datavyu Team (2014). Datavyu: A video coding tool. Databrary Project, New York University. http://datavyu.org.Google Scholar
Davis, M., Bilms, J., & Suveg, C. (2017). In sync and in control: A meta‐analysis of parent–child positive behavioral synchrony and youth self‐regulation. Family Process, 56(4), 962980. https://doi.org/10.1111/famp.12259.CrossRefGoogle ScholarPubMed
Davis, M., West, K., Bilms, J., Morelen, D., & Suveg, C. (2018). A systematic review of parent–child synchrony: It is more than skin deep. Developmental Psychobiology, 60(6), 674691. https://doi.org/10.1002/dev.21743.CrossRefGoogle ScholarPubMed
de Graag, J. A., Cox, R. F., Hasselman, F., Jansen, J., & de Weerth, C. (2012). Functioning within a relationship: Mother–infant synchrony and infant sleep. Infant Behavior and Development, 35(2), 252263. https://doi.org/10.1016/j.infbeh.2011.12.006.CrossRefGoogle ScholarPubMed
Deater-Deckard, K., Pylas, M. V., & Petrill, S. A. (1997). The Parent-Child Interaction System (PARCHISY). London: Institute of Psychiatry.Google Scholar
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. NeuroImage, 23(2), 744751. https://doi.org/10.1016/j.neuroimage.2004.05.025.CrossRefGoogle ScholarPubMed
DePasquale, C. E. (2020). A systematic review of caregiver–child physiological synchrony across systems: Associations with behavior and child functioning. Development and Psychopathology, 32(5), 17541777. https://doi.org/10.1017/S0954579420001236.CrossRefGoogle ScholarPubMed
Doba, K., Pezard, L., & Nandrino, J. L. (2022). How do maternal emotional regulation difficulties modulate the mother–infant behavioral synchrony? Infancy, 27(3), 582608. https://doi.org/10.1111/infa.12461.CrossRefGoogle ScholarPubMed
Duan, H., Yang, T., Wang, X. et al. (2022). Is the creativity of lovers better? A behavioral and functional near-infrared spectroscopy hyperscanning study. Current Psychology, 41(1), 4154. https://doi.org/10.1007/s12144-020-01093-5.CrossRefGoogle Scholar
Dunbar, N. E., Burgoon, J. K., & Fujiwara, K. (2022). Automated methods to examine nonverbal synchrony in dyads. Proceedings of Machine Learning Research, 173, 204217.Google Scholar
Egmose, I., Varni, G., Cordes, K. et al. (2017). Relations between automatically extracted motion features and the quality of mother-infant interactions at 4 and 13 months. Frontiers in Psychology, 8, 2178. https://doi.org/10.3389/fpsyg.2017.02178.CrossRefGoogle Scholar
Emberson, L. L., Zinszer, B. D., Raizada, R. D., & Aslin, R. N. (2017). Decoding the infant mind: Multivariate pattern analysis (MVPA) using fNIRS. PloS ONE, 12(4), https://doi.org/10.1371/journal.pone.0172500.CrossRefGoogle ScholarPubMed
Erel, Y., Jaffe-Dax, S., Yeshurun, Y., & Bermano, A. H. (preprint). STORM-Net: Simple and timely optode registration method for functional near-infrared spectroscopy (fNIRS). bioRxiv, 12.29.424683. https://doi.org/10.1101/2020.12.29.424683.CrossRefGoogle Scholar
Fang, H., Li, J., Tang, H. et al. (2022). AlphaPose: Whole-body regional multi-person pose estimation and tracking in real-time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6), 71577173. https://doi.org/10.1109/TPAMI.2022.3222784.CrossRefGoogle Scholar
Feldman, R. (1998). Coding interactive behavior manual. Unpublished Manual; Bar-Ilan University, Israel.Google Scholar
Feldman, R. (2003). Infant–mother and infant–father synchrony: The coregulation of positive arousal. Infant Mental Health Journal: Official Publication of the World Association for Infant Mental Health, 24(1), 123. https://doi.org/10.1002/imhj.10041.CrossRefGoogle Scholar
Feldman, R. (2006). From biological rhythms to social rhythms: Physiological precursors of mother-infant synchrony. Developmental Psychology, 42(1), 175188. https://doi.org/10.1037/0012-1649.42.1.175.CrossRefGoogle ScholarPubMed
Feldman, R. (2007). Parent–infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. Journal of Child psychology and Psychiatry, 48(3–4), 329354. https://doi.org/10.1111/j.1469-7610.2006.01701.x.CrossRefGoogle ScholarPubMed
Feldman, R. (2012). Parent-infant synchrony: A biobehavioral model of mutual influences in the formation of affiliative bonds. Monographs of the Society for Research in Child Development, 77(2), 4251. https://doi.org/10.1111/j.1540-5834.2011.00600.x.CrossRefGoogle Scholar
Feldman, R., & Eidelman, A. I. (2004). Parent-infant synchrony and the social-emotional development of triplets. Developmental Psychology, 40(6), 1133.CrossRefGoogle ScholarPubMed
Feldman, R., Eidelman, A. I., & Rotenberg, N. (2004). Parenting stress, infant emotion regulation, maternal sensitivity, and the cognitive development of triplets: A model for parent and child influences in a unique ecology. Child Development, 75(6), 17741791.CrossRefGoogle Scholar
Feldman, R., Granat, A. D. I., Pariente, C. et al. (2009). Maternal depression and anxiety across the postpartum year and infant social engagement, fear regulation, and stress reactivity. Journal of the American Academy of Child & Adolescent Psychiatry, 48(9), 919927.Google ScholarPubMed
Feldman, R., & Greenbaum, C. W. (1997). Affect regulation and synchrony in mother – infant play as precursors to the development of symbolic competence. Infant Mental Health Journal, 18(1), 423. https://doi.org/10.1002/(SICI)1097-0355(199721)18:1<4::AID-IMHJ2>3.0.CO;2-R.3.0.CO;2-R>CrossRefGoogle Scholar
Feldman, R., Greenbaum, C. W., Yirmiya, N., & Mayes, L. C. (1996). Relations between cyclicity and regulation in mother-infant interaction at 3 and 9 months and cognition at 2 years. Journal of Applied Developmental Psychology, 17(3), 347365. https://doi.org/10.1016/S0193-3973(96)90031-3.CrossRefGoogle Scholar
Feldman, R., Magori-Cohen, R., Galili, G., Singer, M., & Louzoun, Y. (2011). Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behavior and Development, 34(4), 569577. https://doi.org/10.1016/j.infbeh.2011.06.008.CrossRefGoogle ScholarPubMed
Field, T., Healy, B., & LeBlanc, W. G. (1989). Sharing and synchrony of behavior states and heart rate in nondepressed versus depressed mother-infant interactions. Infant Behavior and Development, 12(3), 357376. https://doi.org/10.1016/0163-6383(89)90044-1.CrossRefGoogle Scholar
Filippetti, M. L., Andreu-Perez, J., De Klerk, C., Richmond, C., & Rigato, S. (2023). Are advanced methods necessary to improve infant fNIRS data analysis? An assessment of baseline-corrected averaging, general linear model (GLM) and multivariate pattern analysis (MVPA) based approaches. NeuroImage, 265, 119756. https://doi.org/10.1016/j.neuroimage.2022.119756.Google Scholar
Fitzpatrick, P., Frazier, J. A., Cochran, D. M. et al. (2016). Impairments of social motor synchrony evident in autism spectrum disorder. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01323.CrossRefGoogle ScholarPubMed
Franchak, J. M., Tang, M., Rousey, H., & Luo, C. (2024). Long-form recording of infant body position in the home using wearable inertial sensors. Behavior Research Methods, 56, 49825001. https://doi.org/10.3758/s13428-023-02236-9.CrossRefGoogle ScholarPubMed
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1–2), 5678. https://doi.org/10.1002/hbm.460020107.CrossRefGoogle Scholar
Fujiwara, K., & Daibo, I. (2016). Evaluating interpersonal synchrony: Wavelet transform toward an unstructured conversation. Frontiers in Psychology, 7, 516. https://doi.org/10.3389/fpsyg.2016.00516.CrossRefGoogle ScholarPubMed
Fujiwara, K., Kimura, M., & Daibo, I. (2020). Rhythmic features of movement synchrony for bonding individuals in dyadic interaction. Journal of Nonverbal Behavior, 44(1), 173193. https://doi.org/10.1007/s10919-019-00315-0.CrossRefGoogle Scholar
Fujiwara, K., & Yokomitsu, K. (2021). Video-based tracking approach for nonverbal synchrony: A comparison of Motion Energy Analysis and OpenPose. Behavior Research Methods, 53(6), 27002711. https://doi.org/10.3758/s13428-021-01612-7.CrossRefGoogle ScholarPubMed
Funamoto, A., & Rinaldi, C. M. (2015). Measuring parent–child mutuality: A review of current observational coding systems. Infant Mental Health Journal, 36(1), 311. https://doi.org/10.1002/imhj.21481.CrossRefGoogle ScholarPubMed
Fusaroli, R., Konvalinka, I., & Wallot, S. (2014). Analyzing social interactions: The promises and challenges of using cross recurrence quantification analysis. In Translational Recurrences: From Mathematical Theory to Real-World Applications (pp. 137155). Cham: Springer International.CrossRefGoogle Scholar
Gemignani, J., de la Cruz-Pavía, I., Martinez, A. et al. (2023). Reproducibility of infant fNIRS studies: A meta-analytic approach. Neurophotonics, 10(2), 023518.Google ScholarPubMed
Gemignani, J., & Gervain, J. (2021). Comparing different pre-processing routines for infant fNIRS data. Developmental Cognitive Neuroscience, 48, 100943. https://doi.org/10.1016/j.dcn.2021.100943.CrossRefGoogle ScholarPubMed
Golds, L., Gillespie‐Smith, K., Nimbley, E., & MacBeth, A. (2022). What factors influence dyadic synchrony? A systematic review of the literature on predictors of mother–infant dyadic processes of shared behavior and affect. Infant Mental Health Journal, 43(5), 808830. https://doi.org/10.1002/imhj.22011.CrossRefGoogle ScholarPubMed
Gordon, I., & Feldman, R. (2008). Synchrony in the triad: A microlevel process model of coparenting and parent‐child interactions. Family Process, 47(4), 465479. https://doi.org/10.1111/j.1545-5300.2008.00266.x.CrossRefGoogle ScholarPubMed
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Prolactin, oxytocin, and the development of paternal behavior across the first six months of fatherhood. Hormones and Behavior, 58(3), 513518. https://doi.org/10.1016/j.yhbeh.2010.04.007.CrossRefGoogle ScholarPubMed
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791.CrossRefGoogle Scholar
Granner-Shuman, M., Dahan, A., Yozevitch, R., & Problovski, H. Z. G. (2021). The association among autistic traits, interactional synchrony and typical pattern of motor planning and execution in neurotypical individuals. Symmetry, 13(6), 1034. https://doi.org/10.3390/SYM13061034.CrossRefGoogle Scholar
Gratier, M. (2003). Expressive timing and interactional synchrony between mothers and infants: Cultural similarities, cultural differences, and the immigration experience. Cognitive Development, 18(4), 533554.CrossRefGoogle Scholar
Grossmann, T., & Johnson, M. H. (2010). Selective prefrontal cortex responses to joint attention in early infancy. Biology Letters, 6(4), 540543. http://dx.doi.org/10.1098/rsbl. 2009.1069.CrossRefGoogle ScholarPubMed
Grossmann, T., Parise, E., & Friederici, A. D. (2010). The detection of communicative signals directed at the self in infant prefrontal cortex. Frontiers in Human Neuroscience, 4, 201. http://dx.doi.org/10.3389/fnhum.2010.00201.CrossRefGoogle ScholarPubMed
Gvirts Probolovski, H. Z. (2020). Commentary: Using second-person neuroscience to elucidate the mechanisms of reciprocal social interaction. Frontiers in Behavioral Neuroscience, 14, 13.CrossRefGoogle ScholarPubMed
Gvirts Problovski, H. Z., Lavi, D., Yozevitch, R. et al. (2021). Impairments of interpersonal synchrony evident in attention deficit hyperactivity disorder (ADHD). Acta Psychologica, 212, 103210. https://doi.org/10.1016/j.actpsy.2020.103210.CrossRefGoogle ScholarPubMed
Gvirts, H. Z., & Perlmutter, R. (2020). What guides us to neurally and behaviorally align with anyone specific? A neurobiological model based on fNIRS hyperscanning studies. The Neuroscientist, 26(2), 108116.CrossRefGoogle ScholarPubMed
Gvirts Provolovski, H. Z., Sharma, M., Gutman, I. et al. (2023). New framework for understanding cross-brain coherence in functional near-infrared spectroscopy (fNIRS) hyperscanning studies. Journal of Visualized Experiments, (200), e65347. https://doi.org/10.3791/65347.Google Scholar
Ham, J., & Tronick, E. (2009). Relational psychophysiology: Lessons from mother–infant physiology research on dyadically expanded states of consciousness. Psychotherapy Research, 19(6), 619632. https://doi.org/10.1080/10503300802609672.CrossRefGoogle ScholarPubMed
Hamilton, A. F. D. C. (2021). Hyperscanning: Beyond the hype. Neuron, 109(3), 404407.CrossRefGoogle ScholarPubMed
Hammack, J., Sharma, M., Riera-Gomez, L., Gvirts, H. Z., & Wilcox, T. (2023). When I move, you move: Associations between automatic and person-coded measures of infant-mother synchrony during free-play using virtual in-home data collection. Infant Behavior and Development, 72, 2. https://doi.org/10.1016/j.infbeh.2023.101869.CrossRefGoogle ScholarPubMed
Hammal, Z., Cohn, J. C., & Messinger, D. S. (2015). Head movement dynamics during play and perturbed mother-infant interaction. IEEE Transactions on Affective Computing, 6(4), 361370. 10.1109/TAFFC.2015.2422702.CrossRefGoogle ScholarPubMed
Harel, H., Gordon, I., Geva, R., & Feldman, R. (2010). Gaze behaviors of preterm and full‐term infants in nonsocial and social contexts of increasing dynamics: Visual recognition, attention regulation, and gaze synchrony. Infancy, 16(1), 6990. https://doi.org/10.1111/j.1532-7078.2010.00037.x.CrossRefGoogle Scholar
Haresign, I. M., Phillips, E. A. M., Whitehorn, M., et al. (2022). Measuring the temporal dynamics of inter-personal neural entrainment in continuous child-adult EEG hyperscanning data. Developmental cognitive neuroscience, 54, 101093.CrossRefGoogle Scholar
Haufe, S., Nikulin, V. V., Müller, K. R., & Nolte, G. (2013). A critical assessment of connectivity measures for EEG data: A simulation study. NeuroImage, 64, 120133. https://doi.org/10.1016/j.neuroimage.2012.09.036.CrossRefGoogle ScholarPubMed
Healey, D. M., Gopin, C. B., Grossman, B. R., Campbell, S. B., & Halperin, J. M. (2010). Mother–child dyadic synchrony is associated with better functioning in hyperactive/inattentive preschool children. Journal of Child Psychology and Psychiatry, 51(9), 10601061. https://doi.org/10.1111/j.1469-7610.2010.02220.x.CrossRefGoogle ScholarPubMed
Hesse, N., Pujades, S., Black, M. J. et al. (2019). Learning and tracking the 3D body shape of freely moving infants from RGB-D sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10), 25402551. https://doi.org/10.1109/TPAMI.2019.2917908.CrossRefGoogle ScholarPubMed
Hoch, J. E., Ossmy, O., Cole, W. G., Hasan, S., & Adolph, K. E. (2021). “Dancing” together: Infant–mother locomotor synchrony. Child Development, 92(4), 13371353. https://doi.org/10.1111/cdev.13513.CrossRefGoogle ScholarPubMed
Hoehl, S., & Markova, G. (2018). Moving developmental social neuroscience toward a second-person approach. PLoS Biology, 16(12), e3000055. https://doi.org/10.1371/journal.pbio.3000055.CrossRefGoogle Scholar
Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949960. https://doi.org/10.1521/soco.2009.27.6.949.CrossRefGoogle Scholar
Hoyniak, C. P., Quiñones-Camacho, L. E., Camacho, M. C. et al. (2021). Adversity is linked with decreased parent-child behavioral and neural synchrony. Developmental Cognitive Neuroscience, 48, 100937. https://doi.org/10.1016/j.dcn.2021.100937.CrossRefGoogle ScholarPubMed
Huang, X., Fu, N., Liu, S., & Ostadabbas, S. (2021). Invariant representation learning for infant pose estimation with small data. 202116th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 18. https://doi.org/10.1109/FG52635.2021.9666956.CrossRefGoogle Scholar
Hyde, D. C., Simon, C. E., Ting, F., & Nikolaeva, J. I. (2018). Functional organization for theory of mind in pre-verbal infants: A near-infrared spectroscopy study. The Journal of Neuroscience, 38(18), 42644274.CrossRefGoogle Scholar
Ilyka, D., Johnson, M. H., & Lloyd-Fox, S. (2021). Infant social interactions and brain development: A systematic review. Neuroscience & Biobehavioral Reviews, 130, 448469.CrossRefGoogle ScholarPubMed
Isabella, R. A., & Belsky, J. (1991). Interactional synchrony and the origins of infant‐mother attachment: A replication study. Child Development, 62(2), 373384.CrossRefGoogle ScholarPubMed
Isabella, R. A., Belsky, J., & von Eye, A. (1989). Origins of infant-mother attachment: An examination of interactional synchrony during the infant’s first year. Developmental Psychology, 25(1), 1221. https://doi.org/10.1037/0012-1649.25.1.12.Google Scholar
Issartel, J., Bardainne, T., Gaillot, P., & Marin, L. (2015). The relevance of the cross-wavelet transform in the analysis of human interaction – A tutorial. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01566.CrossRefGoogle ScholarPubMed
Jebeli, A., Chen, L. K., Guerrerio, K. et al. (2024). Quantifying the quality of parent-child interaction through machine-learning based audio and video analysis: Towards a vision of AI-assisted coaching support for social workers. ACM Journal on Computing and Sustainable Societies, 2(1), 121. https://doi.org/10.1145/3617693.CrossRefGoogle Scholar
Jiang, J., Dai, B., Peng, D. et al. (2012). Neural synchronization during face-to-face communication. Journal of Neuroscience, 32(45), 1606416069. https://doi.org/10.1523/JNEUROSCI.2926-12.2012.CrossRefGoogle ScholarPubMed
Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 14091422. http://dx.doi.org/10.1109/TPAMI.2011.239.CrossRefGoogle ScholarPubMed
Karaca, B., Salah, A. A., Denissen, J., Poppe, R., & de Zwarte, S. M. (2024, May). Survey of automated methods for nonverbal behavior analysis in parent-child interactions. In 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG) (pp. 1–11). https://doi.org/10.1109/FG59268.2024.10582009.CrossRefGoogle Scholar
Karger, R. H. (1979). Synchrony in mother-infant interactions. Child Development, 50(3), 882885. https://doi.org/10.2307/1128959.CrossRefGoogle ScholarPubMed
Keefe, M. R., Kotzer, A. M., Froese-Fretz, A., & Curtin, M. (1996). A longitudinal comparison of irritable and nonirritable infants. Nursing Research, 45(1), 49. https://doi.org/10.1097/00006199-199601000-00002.CrossRefGoogle ScholarPubMed
Kellerman, A. M., Schwichtenberg, A. J., Abu‐Zhaya, R. et al. (2020). Dyadic synchrony and responsiveness in the first year: Associations with autism risk. Autism Research, 13(12), 21902201. https://doi.org/10.1002/aur.2373.CrossRefGoogle ScholarPubMed
Klein, L., Ardulov, V., Hu, Y. et al. (2020, October). Incorporating measures of intermodal coordination in automated analysis of infant-mother interaction. In Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 287295). https://doi.org/10.1145/3382507.3418870.CrossRefGoogle Scholar
Koehne, S., Hatri, A., Cacioppo, J. T., & Dziobek, I. (2016). Perceived interpersonal synchrony increases empathy: Insights from autism spectrum disorder. Cognition, 146, 815. https://doi.org/10.1016/j.cognition.2015.09.007.CrossRefGoogle ScholarPubMed
Leclère, C., Avril, M., Viaux-Savelon, S. et al. (2016). Interaction and behaviour imaging: A novel method to measure mother–infant interaction using video 3D reconstruction. Translational Psychiatry, 6(5), e816. https://doi.org/10.1038/tp.2016.82.CrossRefGoogle ScholarPubMed
Leclère, C., Viaux, S., Avril, M. et al. (2014). Why synchrony matters during mother-child interactions: A systematic review. PloS ONE, 9(12), e113571. https://doi.org/10.1371/journal.pone.0113571.CrossRefGoogle ScholarPubMed
Lemus, A., Vogel, S. C., Greaves, A. N., & Brito, N. H. (2022). Maternal anxiety symptoms associated with increased behavioral synchrony in the early postnatal period. Infancy, 27(4), 821835. https://doi.org/10.1111/infa.12473.CrossRefGoogle ScholarPubMed
Leo, M., Bernava, G. M., Carcagnì, P., & Distante, C. (2022). Video-based automatic baby motion analysis for early neurological disorder diagnosis: State of the art and future directions. Sensors, 22(3), 866. https://doi.org/10.3390/s22030866.CrossRefGoogle ScholarPubMed
Leong, V., Byrne, E., Clackson, K. et al. (2017). Speaker gaze increases information coupling between infant and adult brains. Proceedings of the National Academy of Sciences, 114(50), 1329013295. https://doi.org/10.1073/pnas.1702493114.CrossRefGoogle ScholarPubMed
Li, Y., Halleck, T. Q., Evans, L. et al. (2024). Eye of the beholder: Neural synchrony of dynamically changing relations between parent praise and child affect. Developmental Science, 27(6), e13541. https://doi.org/10.1111/desc.13541.CrossRefGoogle ScholarPubMed
Liu, S., Han, Z. R., Xu, J. et al. (2024). Parenting links to parent–child interbrain synchrony: A real-time fNIRS hyperscanning study. Cerebral Cortex, 34(2), bhad533. https://doi.org/10.1093/cercor/bhad533.Google ScholarPubMed
Liu, Y., Moss, E., Ting, F., & Hyde, D. C. (2025). Neural sensitivity to others’ belief states in infancy predicts later theory of mind reasoning in childhood. Cortex, 184, 96105. https://doi.org/10.1016/j.cortex.2024.11.023.CrossRefGoogle ScholarPubMed
Liu, J., Zhang, R., Geng, B. et al. (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. NeuroImage, 193, 93102. https://doi.org/10.1016/j.neuroimage.2019.03.004.CrossRefGoogle ScholarPubMed
Liu, Q., Zhu, S., Zhou, X. et al. (2024). Mothers and fathers show different neural synchrony with their children during shared experiences. NeuroImage, 288, 120529.CrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Richards, J. E., Blasi, A. et al. (2014). Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants. Neurophotonics, 1(20), 025006. https://doi.org/10.1117/1.NPh.1.2.025006.CrossRefGoogle ScholarPubMed
Longhi, E. (2009). “Songese”: Maternal structuring of musical interaction with infants. Psychology of Music, 37(2), 195213. https://doi.org/10.1177/0305735608097042.CrossRefGoogle Scholar
López Pérez, D., Leonardi, G., Niedźwiecka, A. et al. (2017). Combining recurrence analysis and automatic movement extraction from video recordings to study behavioral coupling in face-to-face parent-child interactions. Frontiers in Psychology, 8, 2228. https://doi.org/10.3389/fpsyg.2017.02228.CrossRefGoogle ScholarPubMed
Lotzin, A., Romer, G., Schiborr, J. et al. (2015). Gaze synchrony between mothers with mood disorders and their infants: Maternal emotion dysregulation matters. PLoS ONE, 10(12), e0144417. https://doi.org/10.1371/journal.pone.0144417.CrossRefGoogle ScholarPubMed
Loulis, S., & Kuczynski, L. (1997). Beyond one hand clapping: Seeing bidirectionality in parent-child relations. Journal of Social and Personal Relationships, 14(4), 441461. https://doi.org/10.1177/0265407597144002.CrossRefGoogle Scholar
Lourenço, V., Coutinho, J., & Pereira, A. F. (2021). Advances in microanalysis: Magnifying the social microscope on mother-infant interactions. Infant Behavior and Development, 64, 101571. https://doi.org/10.1016/j.infbeh.2021.101571.CrossRefGoogle ScholarPubMed
Lu, K., Qiao, X., Yun, Q., & Hao, N. (2021). Educational diversity and group creativity: Evidence from fNIRS hyperscanning. NeuroImage, 243, 118564. https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118564.CrossRefGoogle ScholarPubMed
Lu, K., Xue, H., Nozawa, T., & Hao, N. (2019). Cooperation makes a group be more creative. Cerebral Cortex, 29(8), 34573470. https://doi.org/10.1093/cercor/bhy215.CrossRefGoogle ScholarPubMed
Lundy, B. L. (2003). Father–and mother–infant face-to-face interactions: Differences in mind-related comments and infant attachment? Infant Behavior and Development, 26(2), 200212.CrossRefGoogle Scholar
MacLean, P. C., Rynes, K. N., Aragón, C. et al. (2014). Mother–infant mutual eye gaze supports emotion regulation in infancy during the still-face paradigm. Infant Behavior and Development, 37(4), 512522. https://doi.org/10.1016/j.infbeh.2014.06.008.CrossRefGoogle ScholarPubMed
Marriott Haresign, I., Phillips, E. A. M., & Wass, S. V. (2024). Why behaviour matters: Studying inter-brain coordination during child-caregiver interaction. Developmental Cognitive Neuroscience, 67, 101384. https://doi.org/10.1016/j.dcn.2024.101384.CrossRefGoogle Scholar
Marriott Haresign, I., Phillips, E. A. M., Whitehorn, M. et al. (2023). Gaze onsets during naturalistic infant-caregiver interaction associate with “sender” but not “receiver” neural responses, and do not lead to changes in inter-brain synchrony. Scientific Reports, 13(1), 3555. https://doi.org/10.1038/s41598-023-28988-0.CrossRefGoogle Scholar
Marton-Alper, I. Z., Gvirts-Provolovski, H. Z., Nevat, M., Karklinsky, M., & Shamay-Tsoory, S. G. (2020). Herding in human groups is related to high autistic traits. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74951-8.CrossRefGoogle Scholar
Marton‐Alper, I. Z., Markus, A., Nevat, M., Bennet, R., & Shamay‐Tsoory, S. G. (2023). Differential contribution of between and within‐brain coupling to movement synchronization. Human Brain Mapping, 44(10), 41364151.CrossRefGoogle ScholarPubMed
Mathis, A., Mamidanna, P., Cury, K. M. et al. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21, 12811289. https://doi.org/10.1038/s41593-018-0209-y.CrossRefGoogle ScholarPubMed
Mayo, O., & Gordon, I. (2020). In and out of synchrony – Behavioral and physiological dynamics of dyadic interpersonal coordination. Psychophysiology, 57(6), e13574. https://doi.org/10.1111/psyp.13574.CrossRefGoogle ScholarPubMed
McDonald, N. M., & Perdue, K. L. (2018). The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 87, 3849.CrossRefGoogle ScholarPubMed
Miller, J. G., Vrtička, P., Cui, X. et al. (2019). Inter-brain synchrony in mother-child dyads during cooperation: An fNIRS hyperscanning study. Neuropsychologia, 124, 117124. https://doi.org/10.1016/j.neuropsychologia.2018.12.021.CrossRefGoogle ScholarPubMed
Minagawa, Y., Hata, M., Yamamoto, E., Tsuzuki, D., & Morimoto, S. (2023). Inter-brain synchrony during mother–infant interactive parenting in 3–4-month-old infants with and without an elevated likelihood of autism spectrum disorder. Cerebral Cortex, 33(24), 1160911622. https://doi.org/10.1093/cercor/bhad395.CrossRefGoogle ScholarPubMed
Mize, J., & Pettit, G. S. (1997). Mothers’ social coaching, mother-child relationship style, and children’s peer competence: Is the medium the message? Child Development, 68(2), 312332. https://doi.org/10.2307/1131852.CrossRefGoogle Scholar
Moore, G. A., & Calkins, S. D. (2004). Infants’ vagal regulation in the still-face paradigm is related to dyadic coordination of mother-infant interaction. Developmental Psychology, 40(6), 1068. https://doi.org/10.1037/0012-1649.40.6.1068.CrossRefGoogle ScholarPubMed
Moore, G. A., Quigley, K. M., Voegtline, K. M., & DiPietro, J. A. (2016). Don’t worry, be (moderately) happy: Mothers’ anxiety and positivity during pregnancy independently predict lower mother–infant synchrony. Infant Behavior and Development, 42, 6068. https://doi.org/10.1016/j.infbeh.2015.11.002.CrossRefGoogle ScholarPubMed
Morgan, R., Fischer, R., & Bulbulia, J. A. (2017). To be in synchrony or not? A meta-analysis of synchrony’s effects on behavior, perception, cognition and affect. Journal of Experimental Social Psychology, 72, 1320. https://doi.org/10.1016/j.jesp.2017.03.009.CrossRefGoogle Scholar
Morgan, J. K., Santosa, H., Conner, K. K. et al. (2023). Mother–child neural synchronization is time linked to mother–child positive affective state matching. Social Cognitive and Affective Neuroscience, 18(1), nsad001.CrossRefGoogle ScholarPubMed
Nazneen, T., Islam, I. B., Sajal, Md. S. R. et al. (2022). Recent trends in non-invasive neural recording based brain-to-brain synchrony analysis on multidisciplinary human interactions for understanding brain dynamics: A systematic review. Frontiers in Computational Neuroscience, 16, 875282. https://doi.org/10.3389/fncom.2022.875282.CrossRefGoogle ScholarPubMed
Ngueyep, R., & Serban, N. (2015). Large-vector autoregression for multilayer spatially correlated time series. Technometrics, 57(2), 207216.CrossRefGoogle Scholar
Nguyen, T., Abney, D. H., Salamander, D., Bertenthal, B. I., & Hoehl, S. (2021). Proximity and touch are associated with neural but not physiological synchrony in naturalistic mother-infant interactions. NeuroImage, 244, 118599. https://doi.org/10.1016/j.neuroimage.2021.118599.CrossRefGoogle Scholar
Nguyen, T., Hoehl, S., & Vrtička, P. (2021). A guide to parent-child fNIRS hyperscanning data processing and analysis. Sensors, 21(12), 4075. https://doi.org/10.3390/s21124075.CrossRefGoogle ScholarPubMed
Nguyen, T., Kungl, M. T., Hoehl, S., White, L. O., & Vrtička, P. (2023). Visualizing the invisible tie: Linking parent–child neural synchrony to parents’ and children’s attachment representations. Developmental Science, e13504. https://doi.org/10.1111/desc.13504.CrossRefGoogle Scholar
Nguyen, T., Schleihauf, H., Kayhan, E. et al. (2020). The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex, 124, 235249. https://doi.org/10.1016/j.cortex.2019.11.020.CrossRefGoogle ScholarPubMed
Nguyen, T., Schleihauf, H., Kayhan, E. et al. (2021). Neural synchrony in mother–child conversation: Exploring the role of conversation patterns. Social Cognitive and Affective Neuroscience, 16(1–2), 93102. https://doi.org/10.1093/scan/nsaa079.CrossRefGoogle ScholarPubMed
Nguyen, T., Schleihauf, H., Kungl, M. et al. (2021). Interpersonal neural synchrony during father–child problem solving: An fNIRS hyperscanning study. Child Development, 92(4), e565e580. https://doi.org/10.1111/cdev.13510.CrossRefGoogle ScholarPubMed
Nguyen, T., Zimmer, L., & Hoehl, S. (2023). Your turn, my turn: Neural synchrony in mother–infant proto-conversation. Philosophical Transactions of the Royal Society B, 378(1875), 20210488. https://doi.org/10.1098/rstb.2021.0488.CrossRefGoogle ScholarPubMed
Oku, A. Y. A., Barreto, C., Bruneri, G. et al. (2022). Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms. Frontiers in Computational Neuroscience, 16, 975743. https://doi.org/10.3389/fncom.2022.975743.CrossRefGoogle Scholar
Owen, M. T., Barfoot, B., Vaughn, A., Domingue, G., & Ware, A. M. (1996). 54-month parent-child structured interaction qualitative rating scales. NICHD Study of Early Child Care Research Consortium: Washington, DC.Google Scholar
Pan, Y., Cheng, X., Zhang, Z., Li, X., & Hu, Y. (2017). Cooperation in lovers: An fNIRS‐based hyperscanning study. Human Brain Mapping, 38(2), 831841. https://doi.org/10.1002/hbm.23421.CrossRefGoogle ScholarPubMed
Pan, Y., Dikker, S., Goldstein, P. et al. (2020). Instructor-learner brain coupling discriminates between instructional approaches and predicts learning. NeuroImage, 211, 116657. https://doi.org/10.1016/j.neuroimage.2020.116657.CrossRefGoogle ScholarPubMed
Papoutselou, E., Harrison, S., Mai, G. et al. (2024). Investigating mother–child inter‐brain synchrony in a naturalistic paradigm: A functional near infrared spectroscopy (fNIRS) hyperscanning study. European Journal of Neuroscience, 59(6), 13861403. https://doi.org/10.1111/ejn.16233.CrossRefGoogle Scholar
Perner, J., & Roessler, J. (2012). From infants’ to children’s appreciation of belief. Trends in Cognitive Sciences, 16(10), 519e525.CrossRefGoogle ScholarPubMed
Pasiak, C. A. (2017). Elucidating the Effect of Mother-Child Interactional Synchrony: Relations between Synchrony, Mutuality, Parenting Attitudes, and Preschool Adjustment (Doctoral dissertation, University of Windsor (Canada)).Google Scholar
Pasiak, C., & Menna, R. (2015). Mother–child synchrony: Implications for young children’s aggression and social competence. Journal of Child and Family Studies, 24(10), 30793092. https://doi.org/10.1007/s10826-015-0113-y.CrossRefGoogle Scholar
Piazza, E. A., Hasenfratz, L., Hasson, U., & Lew-Williams, C. (2020). Infant and adult brains are coupled to the dynamics of natural communication. Psychological Science, 31(1), 617. https://doi.org/10.1177/0956797619878698.CrossRefGoogle Scholar
Piazza, E. A., Lordan, M. C., Hasenfratz, L., Hasson, U., & Lew-Williams, C. (2019). Using naturalistic paradigms to study how adult speakers accommodate infant listeners’ unique processing demands. The Journal of the Acoustical Society of America, 145(3_Supplement), 1730. https://doi.org/10.1121/1.5101354.CrossRefGoogle Scholar
Pouw, W., Trujillo, J. P., & Dixon, J. A. (2020). The quantification of gesture–speech synchrony: A tutorial and validation of multimodal data acquisition using device-based and video-based motion tracking. Behavior Research Methods, 52(2), 723740. https://doi.org/10.3758/s13428-019-01271-9.CrossRefGoogle ScholarPubMed
Provenzi, L., Scotto di Minico, G., Giusti, L., Guida, E., & Müller, M. (2018). Disentangling the dyadic dance: Theoretical, methodological and outcomes systematic review of mother-infant dyadic processes. Frontiers in Psychology, 9, 348. https://doi.org/10.3389/fpsyg.2018.00348.CrossRefGoogle ScholarPubMed
Pukhova, V. M., Kustov, T. V, & Ferrini, G. (2018). Time-frequency analysis of non-stationary signals. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 11411145. https://doi.org/10.1109/EIConRus.2018.8317292.CrossRefGoogle Scholar
Quiñones-Camacho, L. E., Fishburn, F. A., Camacho, M. C., Wakschlag, L. S., & Perlman, S. B. (2019). Cognitive flexibility-related prefrontal activation in preschoolers: A biological approach to temperamental effortful control. Developmental Cognitive Neuroscience, 38, 100651. https://doi.org/10.1016/j.dcn.2019.100651.CrossRefGoogle ScholarPubMed
Quiñones-Camacho, L. E., Hoyniak, C. P., Wakschlag, L. S., & Perlman, S. B. (2022). Getting in synch: Unpacking the role of parent–child synchrony in the development of internalizing and externalizing behaviors. Development and Psychopathology, 34(5), 19011913.CrossRefGoogle ScholarPubMed
Ramseyer, F. T. (2020). Motion energy analysis (MEA): A primer on the assessment of motion from video. Journal of Counseling Psychology, 67(4), 536549. https://doi.org/10.1037/cou0000407.CrossRefGoogle Scholar
Ramseyer, F., & Tschacher, W. (2008). Synchrony in dyadic psychotherapy sessions. In Vrobel, S., Rössler, O. E., & Marks-Tarlow, T. (Eds.), Simultaneity: Temporal Structures and Observer Perspectives, (pp. 329347). World Scientific. https://doi.org/10.1142/9789812792426_0020.CrossRefGoogle Scholar
Ramseyer, F., & Tschacher, W. (2011). Nonverbal synchrony in psychotherapy: Coordinated body movement reflects relationship quality and outcome. Journal of Consulting and Clinical Psychology, 79(3), 284295. https://doi.org/10.1037/a0023419.CrossRefGoogle ScholarPubMed
Redcay, E., & Schilbach, L. (2019). Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience, 20(8), 495505. https://doi.org/10.1038/s41583-019-0179-4.CrossRefGoogle ScholarPubMed
Reddish, P., Fischer, R., & Bulbulia, J. (2013). Let’s dance together: Synchrony, shared intentionality and cooperation. PLoS ONE, 8(8), e71182. https://doi.org/10.1371/journal.pone.0071182.CrossRefGoogle ScholarPubMed
Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493502. https://doi.org/10.1016/j.neuroimage.2018.05.060.CrossRefGoogle ScholarPubMed
Reindl, V., Konrad, K., Gerloff, C. et al. (2019). Conducting hyperscanning experiments with functional near-infrared spectroscopy. JoVE (Journal of Visualized Experiments), (143), e58807. https://doi.org/10.3791/58807.Google Scholar
Reindl, V., Wass, S., Leong, V. et al. (2022). Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads. NeuroImage, 251, 118982. https://doi.org/10.1016/j.neuroimage.2022.118982.CrossRefGoogle ScholarPubMed
Reyna, B. A., Brown, L. F., Pickler, R. H., Myers, B. J., & Younger, J. B. (2012). Mother–infant synchrony during infant feeding. Infant Behavior and Development, 35(4), 669677. https://doi.org/10.1016/j.infbeh.2012.06.003.CrossRefGoogle ScholarPubMed
Rochat, P., & Goubet, N. (1995). Development of sitting and reaching in 5- to 6-month-old infants. Infant Behavior & Development, 18(1), 5368. https://doi.org/10.1016/0163-6383(95)90007-1.CrossRefGoogle Scholar
Roche, E. C., Redcay, E., & Romeo, R. R. (2025). Caregiver-child neural synchrony: Magic, mirage, or developmental mechanism? Developmental Cognitive Neuroscience, 71, 101482.CrossRefGoogle ScholarPubMed
Schilbach, L., Timmermans, B., Reddy, V. et al. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393414. https://doi.org/10.1017/S0140525X12000660.CrossRefGoogle Scholar
Schmidt, R. C., & Fitzpatrick, P. (2019). Embodied synchronization and complexity in a verbal interaction. Nonlinear Dynamics, Psychology, and Life Sciences, 23(2), 199228.Google Scholar
Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In Fuchs, A. & Jirsa, V. K. (Eds.), Coordination: Neural, Behavioral and Social Dynamics (pp. 281308). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-74479-5_14.CrossRefGoogle Scholar
Schoenherr, D., Paulick, J., Strauss, B. M. et al. (2019). Identification of movement synchrony: Validation of windowed cross-lagged correlation and-regression with peak-picking algorithm. PloS ONE, 14(2), e0211494. https://doi.org/10.1371/journal.pone.0211494.CrossRefGoogle ScholarPubMed
Scholkmann, F., Kleiser, S., Metz, A. J. et al. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 85(Pt. 1), 627. https://doi.org/10.1016/j.neuroimage.2013.05.004.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Saporta, N., Marton-Alper, I. Z, & Gvirts, H. Z (2019). Herding brains: A core neural mechanism for social alignment. Trends in Cognitive Sciences, 23(3), 174186.CrossRefGoogle ScholarPubMed
Shin, H. I., Shin, H.-I., Bang, M. S. et al. (2022). Deep learning-based quantitative analyses of spontaneous movements and their association with early neurological development in preterm infants. Scientific Reports, 12(1), 3138. https://doi.org/10.1038/s41598-022-07139-x.CrossRefGoogle ScholarPubMed
Skuban, E. M., Shaw, D. S., Gardner, F., Supplee, L. H., & Nichols, S. R. (2006). The correlates of dyadic synchrony in high-risk, low-income toddler boys. Infant Behavior and Development, 29(3), 423434. https://doi.org/10.1016/j.infbeh.2006.02.004.CrossRefGoogle ScholarPubMed
Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: Motor skill acquisition facilitates three-dimensional object completion. Developmental Psychology, 46(1), 129138. https://doi.org/10.1037/a0014618.CrossRefGoogle ScholarPubMed
Stamate, D., Davuloori, P., Logofatu, D. et al. (2024, June). Ensembles of bidirectional LSTM and GRU neural nets for predicting mother-infant synchrony in videos. In International Conference on Engineering Applications of Neural Networks (pp. 329342). Cham: Springer Nature. https://doi.org/10.1007/978-3-031-62495-7_25.CrossRefGoogle Scholar
Stamate, D., Haran, R., Rutkowska, K. et al. (2023, September). Predicting high vs low mother-baby synchrony with GRU-based ensemble models. In International Conference on Artificial Neural Networks (pp. 191199). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44201-8_16.Google Scholar
Sun, B., Xiao, W., Feng, X. et al. (2020). Behavioral and brain synchronization differences between expert and novice teachers when collaborating with students. Brain and Cognition, 139, 105513. https://doi.org/https://doi.org/10.1016/j.bandc.2019.105513.CrossRefGoogle ScholarPubMed
Sylos-Labini, F., d’Avella, A., Lacquaniti, F., & Ivanenko, Y. (2018). Human-human interaction forces and interlimb coordination during side-by-side walking with hand contact. Frontiers in Physiology, 9, 179. https://doi.org/10.3389/fphys.2018.00179.CrossRefGoogle ScholarPubMed
Tamis-LeMonda, C. S., Ahuja, P., Hannibal, B., Shannon, J., & Spellmann, M. (2002). Caregiver-Child affect, responsiveness, and engagement scale (C-CARES). Unpublished manuscript.Google Scholar
Theyer, A., Davidson, C., Amaireh, G., & Wijeakumar, S. (2024). Association between caregiver and infant visual neurocognition. Infant Behavior and Development, 76. https://doi.org/10.1016/j.infbeh.2024.101975.CrossRefGoogle ScholarPubMed
Thompson, L. A., & Trevathan, W. R. (2009). Cortisol reactivity, maternal sensitivity, and infant preference for mother’s familiar face and rhyme in 6‐month‐old infants. Journal of Reproductive and Infant Psychology, 27(2), 143167. https://doi.org/10.1080/02646830801918463.CrossRefGoogle ScholarPubMed
Tronick, E. Z., & Cohn, J. F. (1989). Infant-mother face-to-face interaction: Age and gender differences in coordination and the occurrence of miscoordination. Child Development, 60(1), 8592. https://doi.org/10.2307/1131074.CrossRefGoogle ScholarPubMed
Tsai, S.-Y., Barnard, K. E., Lentz, M. J., & Thomas, K. A. (2011). Mother-infant activity synchrony as a correlate of the emergence of circadian rhythm. Biological Research for Nursing, 13(1), 8088. https://doi.org/10.1177/1099800410378889.CrossRefGoogle ScholarPubMed
Tsuzuki, D., Jurcak, V., Singh, A. K. et al. (2007). Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage, 34(4), 15061518. https://doi.org/10.1016/j.neuroimage.2006.10.043.CrossRefGoogle ScholarPubMed
Vacharkulksemsuk, T., & Fredrickson, B. L. (2012). Strangers in sync: Achieving embodied rapport through shared movements. Journal of Experimental Social Psychology, 48(1), 399402. https://doi.org/10.1016/j.jesp.2011.07.015.CrossRefGoogle ScholarPubMed
Valdesolo, P., Ouyang, J., & DeSteno, D. (2010). The rhythm of joint action: Synchrony promotes cooperative ability. Journal of Experimental Social Psychology, 46(4), 693695. https://doi.org/10.1016/j.jesp.2010.03.004.CrossRefGoogle Scholar
Van Dijk, M., Leonardi, G., Pérez, D. L., & Rączaszek-Leonardi, J. (2022). Co-regulation of movements during infant feeding. Infant Behavior and Development, 69, 101755. https://doi.org/10.1016/j.infbeh.2022.101755.CrossRefGoogle ScholarPubMed
Vicaria, I. M., & Dickens, L. (2016). Meta-analyses of the intra- and interpersonal outcomes of interpersonal coordination. Journal of Nonverbal Behavior, 40(4), 335361. https://doi.org/10.1007/s10919-016-0238-8.CrossRefGoogle Scholar
Walton, A. E., Richardson, M. J., Langland-Hassan, P., & Chemero, A. (2015). Improvisation and the self-organization of multiple musical bodies. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00313.CrossRefGoogle ScholarPubMed
Wan, M. W., Green, J., & Scott, J. (2019). A systematic review of parent–infant interaction in infants at risk of autism. Autism, 23(4), 811820.CrossRefGoogle ScholarPubMed
Wass, S. V., Whitehorn, M., Marriott Haresign, I., Phillips, E., & Leong, V. (2020). Interpersonal neural entrainment during early social interaction. Trends in Cognitive Sciences, 24(4), 329342. https://doi.org/10.1016/j.tics.2020.01.006.CrossRefGoogle ScholarPubMed
Weinberg, M. K., Tronick, E. Z., Cohn, J. F., & Olson, K. L. (1999). Gender differences in emotional expressivity and self-regulation during early infancy. Developmental Psychology, 35(1), 175. https://doi.org/10.1037//0012-1649.35.1.175.CrossRefGoogle ScholarPubMed
West, K. L., Zuppichini, M. D., Turner, M. P. et al. (2019). BOLD hemodynamic response function changes significantly with healthy aging. NeuroImage, 188, 198207. https://doi.org/10.1016/j.neuroimage.2018.12.012.CrossRefGoogle ScholarPubMed
Xu, T., & Yu, C. (2016). Quantifying joint activities using cross-recurrence block representation. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 38).Google Scholar
Yücel, M. A., Lühmann, A. V., Scholkmann, F. et al. (2021). Best practices for fNIRS publications. Neurophotonics, 8(1), 012101. https://doi.org/10.1117/1.NPh.8.1.012101.Google ScholarPubMed
Yurtsever, M., & Eken, S. (2022). BabyPose: Real-time decoding of baby’s non-verbal communication using 2D video-based pose estimation. IEEE Sensors Journal, 22(14). https://doi.org/10.1109/JSEN.2022.3183502.CrossRefGoogle Scholar
Zhang, W., Qiu, L., Tang, F., & Li, H. (2023). Affective or cognitive interpersonal emotion regulation in couples: An fNIRS hyperscanning study. Cerebral Cortex, 33(12), 79607970.CrossRefGoogle ScholarPubMed
Zhao, H., Li, Y., Wang, X. et al. (2022). Inter-brain neural mechanism underlying turn-based interaction under acute stress in women: A hyperscanning study using functional near-infrared spectroscopy. Social Cognitive and Affective Neuroscience, 17(9), 850863. https://doi.org/10.1093/scan/nsac005.CrossRefGoogle ScholarPubMed
Zhu, Y., Leong, V., Hou, Y. et al. (2022). Instructor–learner neural synchronization during elaborated feedback predicts learning transfer. Journal of Educational Psychology, 114(6), 14271441. https://doi.org/10.1037/edu0000707.CrossRefGoogle Scholar

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this Element is currently unknown and may be updated in the future.

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New Approaches to Assessing Behavioral and Brain Synchrony in Infant-Parent Dyads
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

New Approaches to Assessing Behavioral and Brain Synchrony in Infant-Parent Dyads
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

New Approaches to Assessing Behavioral and Brain Synchrony in Infant-Parent Dyads
Available formats
×