Skip to main content Accessibility help
×
Home

Abnormalities in extracellular glycine and glutamate levels in the striatum of sandy mice

Published online by Cambridge University Press:  26 February 2013

Yuji Kitaichi
Affiliation:
Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
Ryota Hashimoto
Affiliation:
Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
Takeshi Inoue
Affiliation:
Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
Tomohiro Abekawa
Affiliation:
Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
Aya Kakuta
Affiliation:
Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
Satoko Hattori
Affiliation:
Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
Tsukasa Koyama
Affiliation:
Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
Corresponding

Abstract

Objective

Glycine regulates glutamatergic neurotransmission, and several papers have reported the relationship between glycine and schizophrenia. The dysbindin-1 (DTNBP1: dystrobrevin-binding protein 1) gene is related to glutamatergic neurotransmission and has been found to be a strong candidate gene for schizophrenia. In this study, we clarified the relationship between dysbindin, glutamate, and glycine with in vivo microdialysis methods.

Methods

We measured extracellular glycine and glutamate levels in the striatum of sandy (sdy) mice using in vivo microdialysis methods. Sdy mice express no dysbindin protein owing to a deletion in the dysbindin-1 gene. In addition, we measured changes in those amino acids after methamphetamine (METH) administration.

Results

The basal levels of extracellular glycine and glutamate in the striatum of sdy mice were elevated. These extracellular glutamate levels decreased gradually after METH administration and were not subsequently different from those of wild-type mice.

Conclusions

These results suggest that dysbindin might modulate glycine and glutamate release in vivo.

Type
Original Articles
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Yang, CR, Svensson, KA. Allosteric modulation of NMDA receptor via elevation of brain glycine and d-serine: the therapeutic potentials for schizophrenia. Pharmacol Ther 2008;120:317332.CrossRefGoogle Scholar
2.Javitt, DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 2010;47:416.Google ScholarPubMed
3.Hons, J, Zirko, R, Ulrychova, M, Cermakova, E, Doubek, P, Libiger, J. Glycine serum level in schizophrenia: relation to negative symptoms. Psychiatry Res 2010;176:103108.CrossRefGoogle ScholarPubMed
4.Labrie, V, Lipina, T, Roder, JC. Mice with reduced NMDA receptor glycine affinity model some of the negative symptoms of schizophrenia. Psychopharmacology (Berl) 2008;200:217230.CrossRefGoogle ScholarPubMed
5.Kanahara, N, Shimizu, E, Ohgake, Set al. Glycine and d-serine, but not d-cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology (Berl) 2008;198:363374.CrossRefGoogle Scholar
6.Allen, NC, Bagade, S, McQueen, MBet al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008;40:827834.CrossRefGoogle ScholarPubMed
7.Talbot, K, Eidem, WL, Tinsley, CLet al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004;113:13531363.CrossRefGoogle Scholar
8.Weickert, CS, Straub, RE, McClintock, BWet al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 2004;61:544555.CrossRefGoogle ScholarPubMed
9.Hashimoto, R, Noguchi, H, Hori, Het al. A genetic variation in the dysbindin gene (DTNBP1) is associated with memory performance in healthy controls. World J Biol Psychiatry 2010;11:431438.CrossRefGoogle ScholarPubMed
10.Hashimoto, R, Noguchi, H, Hori, Het al. Association between the dysbindin gene (DTNBP1) and cognitive functions in Japanese subjects. Psychiatry Clin Neurosci 2009;63:550556.CrossRefGoogle ScholarPubMed
11.Olgiati, P, Mandelli, L, Lorenzi, Cet al. Schizophrenia: genetics, prevention and rehabilitation. Acta Neuropsychiatr 2009;21:109120.CrossRefGoogle Scholar
12.Hattori, S, Murotani, T, Matsuzaki, Set al. Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochem Biophys Res Commun 2008;373:298302.CrossRefGoogle Scholar
13.Takao, K, Toyama, K, Nakanishi, Ket al. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 2008;1. doi:10.1186/1756-6606-1-11.CrossRefGoogle Scholar
14.Nihonmatsu-Kikuchi, N, Hashimoto, R, Hattori, Set al. Reduced rate of neural differentiation in the dentate gyrus of adult dysbindin null (sandy) mouse. PLoS One 2011;6:e15886.CrossRefGoogle ScholarPubMed
15.Kobayashi, K, Umeda-Yano, S, Yamamori, H, Takeda, M, Suzuki, H, Hashimoto, R. Correlated alterations in serotonergic and dopaminergic modulations at the hippocampal mossy fiber synapse in mice lacking dysbindin. PLoS One 2011;6:e18113.CrossRefGoogle ScholarPubMed
16.Nagai, T, Kitahara, Y, Shiraki, Aet al. Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: an in vivo microdialysis study. Neurosci Lett 2010;470:134138.CrossRefGoogle ScholarPubMed
17.Numakawa, T, Yagasaki, Y, Ishimoto, Tet al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004;13:26992708.CrossRefGoogle Scholar
18.Kishimoto, M, Ujike, H, Motohashi, Yet al. The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biol Psychiatry 2008;63:191196.CrossRefGoogle ScholarPubMed
19.Abekawa, T, Ito, K, Nakagawa, S, Nakato, Y, Koyama, T. Olanzapine and risperidone block a high dose of methamphetamine-induced schizophrenia-like behavioral abnormalities and accompanied apoptosis in the medial prefrontal cortex. Schizophr Res 2008;101:8494.CrossRefGoogle Scholar
20.Ito, K, Abekawa, T, Koyama, T. Relationship between development of cross-sensitization to MK-801 and delayed increases in glutamate levels in the nucleus accumbens induced by a high dose of methamphetamine. Psychopharmacology (Berl) 2006;187:293302.CrossRefGoogle ScholarPubMed
21.Paxinos, G, Franklin, KBJ. The mouse brain in stereotaxic coordinates. San Diego: Academic Press, 2001.Google Scholar
22.Abekawa, T, Ito, K, Koyama, T. Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex. Naunyn Schmiedebergs Arch Pharmacol 2006;374:177193.CrossRefGoogle ScholarPubMed
23.Chefer, VI, Shippenberg, TS. Paradoxical effects of prodynorphin gene deletion on basal and cocaine-evoked dopaminergic neurotransmission in the nucleus accumbens. Eur J Neurosci 2006;23:229238.CrossRefGoogle ScholarPubMed
24.Feng, YQ, Zhou, ZY, He, Xet al. Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 2008;106:218228.CrossRefGoogle Scholar
25.Hikita, T, Taya, S, Fujino, Yet al. Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein. J Neurochem 2009;110:15671574.CrossRefGoogle ScholarPubMed
26.Legendre, P. The glycinergic inhibitory synapse. Cell Mol Life Sci 2001;58:760793.CrossRefGoogle ScholarPubMed
27.Perry, KW, Falcone, JF, Fell, MJet al. Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacology 2008;55:743754.CrossRefGoogle ScholarPubMed
28.Labrie, V, Clapcote, SJ, Roder, JC. Mutant mice with reduced NMDA-NR1 glycine affinity or lack of d-amino acid oxidase function exhibit altered anxiety-like behaviors. Pharmacol Biochem Behav 2009;91:610620.CrossRefGoogle ScholarPubMed
29.Shimazaki, T, Kaku, A, Chaki, S. d-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacology (Berl) 2010;209:263270.CrossRefGoogle Scholar
30.Gaspar, PA, Bustamante, ML, Silva, H, Aboitiz, F. Molecular mechanisms underling glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 2009;111:891900.CrossRefGoogle Scholar
31.Abekawa, T, Ohmori, T, Koyama, T. Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res 1994;643:276281.CrossRefGoogle ScholarPubMed
32.Karlsgodt, KH, Robleto, K, Trantham-Davidson, Het al. Reduced dysbindin expression mediates N-methyl-d-aspartate receptor hypofunction and impaired working memory performance. Biol Psychiatry 2011;69:2834.CrossRefGoogle ScholarPubMed
33.Dyck, B, Guest, K, Sookram, C, Basu, D, Johnson, R, Mishra, RK. PAOPA, a potent analogue of Pro–Leu–glycinamide and allosteric modulator of the dopamine D2 receptor, prevents NMDA receptor antagonist (MK-801)-induced deficits in social interaction in the rat: implications for the treatment of negative symptoms in schizophrenia. Schizophr Res 2011;125:8892.CrossRefGoogle Scholar
34.Karlsson, RM, Tanaka, K, Saksida, LM, Bussey, TJ, Heilig, M, Holmes, A. Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 2009;34:15781589.CrossRefGoogle ScholarPubMed
35.Nestler, EJ, Hyman, SE, Malenka, RC, eds. Molecular neuropharmacology: a foundation for clinical neuroscience. New York: McGraw Hill, 2001.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 2
Total number of PDF views: 48 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-fgqm6 Total loading time: 0.581 Render date: 2021-01-16T18:33:20.448Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 17:53:46 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Abnormalities in extracellular glycine and glutamate levels in the striatum of sandy mice
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Abnormalities in extracellular glycine and glutamate levels in the striatum of sandy mice
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Abnormalities in extracellular glycine and glutamate levels in the striatum of sandy mice
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *