Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T04:06:07.781Z Has data issue: false hasContentIssue false

Bradykinin actions in the central nervous system: historical overview and psychiatric implications

Published online by Cambridge University Press:  05 January 2024

Frederico Guilherme Graeff
Affiliation:
Behavioural Neurosciences Institute (INeC), Ribeirão Preto, SP, Brazil Department of Psychology, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
Sâmia Joca
Affiliation:
Department of Biomedicine, Aarhus University, Aarhus, Denmark
Helio Zangrossi Jr.*
Affiliation:
Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
*
Corresponding author: Helio Zangrossi; Email: zangross@fmrp.usp.br

Abstract

Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK’s role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA: American Psychiatric Association.Google Scholar
Bahji, A, Vazquez, GH and Zarate, CA (2021) Comparative efficacy of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. Journal of Affective Disorders 278, 542555.CrossRefGoogle ScholarPubMed
Bair, MJ, Robinson, RL, Katon, W and Kroenke, K (2003) Depression and pain comorbidity: a literature review. Archives International Medicine 163(20), 24332445.CrossRefGoogle ScholarPubMed
Baldwin, DS, Anderson, IM, Nutt, DJ, Allgulander, C, Bandelow, B, den Boer, JA, Christmas, DM, Davies, S, Fineberg, N, Lidbetter, N, Malizia, A, McCrone, P, Nabarro, D, O’Neill, C, Scott, J, van der Wee, N and Wittchen, HU (2014) Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. Journal of Psychopharmacology 28(5), 403439.CrossRefGoogle ScholarPubMed
Barić, A and Dobrivojević Radmilović, M (2021) Microglia and bradykinin cross talk in poststroke cognitive impairment in diabetes. American Journal of Physiology-Cell Physiology 320(4), C613C618.CrossRefGoogle ScholarPubMed
Borst, K, Dumas, AA and Prinz, M (2021) Microglia: immune and non-immune functions. Immunity 54(10), 21942208.CrossRefGoogle ScholarPubMed
Brusco, I, Fialho, MFP, Becker, G, Brum, ES, Favarin, A, Marquezin, LP, Serafini, PT and Oliveira, SM (2023) Kinins and their B1 and B2 receptors as potential therapeutic targets for pain relief. Life Science 314, 121302.CrossRefGoogle ScholarPubMed
Burdin, TA, Graeff, FG and Pelá, IR (1992) Opioid mediation of the antiaversive and hyperalgesic actions of bradykinin injected into the dorsal periaqueductal gray of the rat. Physiology and Behavior 52(3), 405410.CrossRefGoogle ScholarPubMed
Camargo, AC and Graeff, FG (1969) Subcellular distribution and properties of the bradykinin inactivation system in rabbit brain homogenates. Biochemical Pharmacology 18(2), 548549.CrossRefGoogle ScholarPubMed
Chen, EY, Emerich, DF, Bartus, RT and Kordower, JH (2000) B2 bradykinin receptor immunoreactivity in rat brain. The Journal of Comparative Neurology 427(1), 118.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Choi, H, Mun, S, Joo, EJ, Lee, KY, Kang, HG and Lee, J (2021) Serum proteomic analysis of major depressive disorder patients and their remission status: novel biomarker set of zinc-alpha-2-glycoprotein and keratin type II cytoskeletal 1. International Journal of Biological Macromolecules 183(2), 20012008.CrossRefGoogle ScholarPubMed
Cohen, BM and Zubenko, GS (1988) Captopril in the treatment of recurrent major depression. Journal of Clinical Psychopharmacology 8(2), 143144.CrossRefGoogle ScholarPubMed
Contreras, F, de la Parte, MA, Cabrera, J, Ospino, N, Israili, ZH and Velasco, M (2003) Role of angiotensin II AT1 receptor blockers in the treatment of arterial hypertension. American Journal of Therapeutics 10(6), 401408.CrossRefGoogle ScholarPubMed
Corrado, AP, Ramos, AOand Rocha E Silva, M (1960) On possible central effects of bradykinin in the cat. Acta Physiologica Latinoamericana 9(1), 222.Google Scholar
Correa, FM and Graeff, FG (1974) Central mechanisms of the hypertensive action of intraventricular bradykinin in the unanaesthetized rat. Neuropharmacology 13(1), 6575.CrossRefGoogle ScholarPubMed
Correa, FM and Graeff, FG (1975) Central site of the hypertensive action of bradykinin. The Journal of Pharmacology and Experimental Therapeutics 192(3), 670676.Google ScholarPubMed
Correa, FM, Innis, RB, Uhl, GR and Snyder, SH (1979) Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain. Proceedings of the National Academy of Sciences of the United States of America 76(3), 14891493.CrossRefGoogle ScholarPubMed
Costerousse, O, Jaspard, E, Wei, L, Corvol, P and Alhenc-Gelas, F (1992) The angiotensin I-converting enzyme (kininase II): molecular organization and regulation of its expression in humans. Journal of Cardiovascular Pharmacology 20(9), S10S15.CrossRefGoogle ScholarPubMed
Couture, R, Harrisson, M, Vianna, RM and Cloutier, F (2001) Kinin receptors in pain and inflammation. European Journal of Pharmacology 429(1-3), 161176.CrossRefGoogle ScholarPubMed
da Silva, GRand Rocha E Silva, M (1971) Catatonia induced in the rabbit by intracerebral injection of bradykinin and morphine. European Journal of Pharmacology 15(2), 180186.CrossRefGoogle ScholarPubMed
de Souza Maciel, I, Azevedo, VM, Oliboni, P and Campos, MM (2021) Blockade of the kinin B1 receptor counteracts the depressive-like behaviour and mechanical allodynia in ovariectomised mice. Behavioural Brain Research 412, 113439.CrossRefGoogle ScholarPubMed
Deakin, JF and Graeff, FG (1991) 5-HT and mechanisms of defence. Journal of Psychopharmacology 5(4), 305315.CrossRefGoogle ScholarPubMed
Deicken, RF (1986) Captopril treatment of depression. Biological Psychiatry 21(14), 14251428.CrossRefGoogle ScholarPubMed
Del-Ben, CM and Graeff, FG (2009) Panic disorder: is the PAG involved? Neural Plasticity 108135, 2009–9.Google Scholar
Dray, A (1997) Kinins and their receptors in hyperalgesia. Canadian Journal of Physiology and Pharmacology 75(6), 704712.CrossRefGoogle ScholarPubMed
Farag, E, Sessler, DI, Ebrahim, Z, Kurz, A, Morgan, J, Ahuja, S, Maheshwari, K and John Doyle, D (2017) The renin angiotensin system and the brain: new developments. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 46, 18.CrossRefGoogle ScholarPubMed
Fava, M, Thase, ME, Trivedi, MH, Ehrich, E, Martin, WF, Memisoglu, A, Nangia, N, Stanford, AD, Yu, M and Pathak, S (2020) Opioid system modulation with buprenorphine/samidorphan combination for major depressive disorder: two randomized controlled studies. Molecular Psychiatry 25(7), 15801591.CrossRefGoogle ScholarPubMed
Ferreira, SH (1965) Bradykinin-potentiating factor (BPF) present in venom of Bothrops jararaca. British Journal of Pharmacology and Chemotherapy 24(1), 163169.CrossRefGoogle Scholar
Fortin, JP and Marceau, F (2006) Advances in the development of bradykinin receptor ligands. Current Topics in Medicinal Chemistry 6(13), 13531363.CrossRefGoogle ScholarPubMed
Germain, L and Chouinard, G (1988) Treatment of recurrent unipolar major depression with captopril. Biological Psychiatry 23(6), 637641.CrossRefGoogle ScholarPubMed
Germain, L and Chouinard, G (1989) Captopril treatment of major depression with serial measurements of blood cortisol concentrations. Biological Psychiatry 25(4), 489493.CrossRefGoogle ScholarPubMed
Graeff, FG (1971) Kinin as possible neurotransmitters in the central nervous system. Ciencia e Cultura 23, 465473.Google Scholar
Graeff, FG (2017) Translational approach to the pathophysiology of panic disorder: focus on serotonin and endogenous opioids. Neuroscience and Biobehavioral Reviews 76(Pt A), 4855.CrossRefGoogle Scholar
Graeff, FG and Arisawa, EA (1978) Effect of intracerebroventricular bradykinin, angiotensin II, and substance P on multiple fixed-interval fixed-ratio responding in rabbits. Psychopharmacology 57(1), 8995.CrossRefGoogle ScholarPubMed
Graeff, FG and Zangrossi, H (2010) The dual role of serotonin in defense and the mode of action of antidepressants on generalized anxiety and panic disorders. Central Nervous System Agents in Medicinal Chemistry 10(3), 207217.CrossRefGoogle ScholarPubMed
Graeff, F, Corrado, A, Pelá, IR and Capek, R (1967) Actions of bradykinin upon the central nervous system. In Rocha Silva, M and Rothschild, H (ed), International Symposium on Vaso-Active Polypeptides: Bradykinin and Related Kinins. III International Pharmacological Congress, pp. 97102.Google Scholar
Graeff, FG, Pelá, IRand Rocha E Silva, M (1969) Behavioural and somatic effects of bradykinin injected into the cerebral ventricles of unanaesthetized rabbits. British Journal of Pharmacology 37(3), 723732.CrossRefGoogle ScholarPubMed
Gröger, M, Lebesgue, D, Pruneau, D, Relton, J, Kim, SW, Nussberger, J and Plesnila, N (2005) Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism 25(8), 978989.CrossRefGoogle ScholarPubMed
Gururajan, A, Reif, A, Cryan, JF and Slattery, DA (2019) The future of rodent models in depression research. Nature Reviews. Neuroscience 20(11), 686701.CrossRefGoogle ScholarPubMed
Hall, JM (1992) Bradykinin receptors: pharmacological properties and biological roles. Pharmacology and Therapeutics 56(2), 131190.CrossRefGoogle ScholarPubMed
Hall, JM (1997) Bradykinin receptors. General Pharmacology 28(1), 16.CrossRefGoogle ScholarPubMed
Hillmeister, P and Persson, AB (2020) Bradykinin-from snake poison to therapeutic options. Acta Physiologica 228(3), e13445.CrossRefGoogle ScholarPubMed
Hökfelt, T, Pernow, B and Wahren, J (2001) Substance P: a pioneer amongst neuropeptides. Journal of Internal Medicine 249(1), 2740.CrossRefGoogle ScholarPubMed
Javelot, H, Messaoudi, M and Garnier, S (2010) Human opiorphin is a naturally occurring antidepressant acting selectively on enkephalin-dependent δ-opioid pathways. The Journal of Physiology 61(3), 335362.Google ScholarPubMed
Jayasinghe, M, Caldera, D, Prathiraja, O, Jena, R, Coffie-Pierre, JA, Agyei, J, Silva, MS, Kayani, AMA and Siddiqui, OS (2022) A comprehensive review of bradykinin-induced angioedema versus histamine-induced angioedema in the emergency department. Cureus 14(11), e32075.Google ScholarPubMed
Kang, G, Zhang, Y, Liu, R, Li, R, Kang, Q, Zhu, X, Yan, L, Yu, Y and Yu, Q (2019) Fibrinogen and kininogen are potential serum protein biomarkers for depressive disorder. Clinical Laboratory 65(10). doi: 10.7754/Clin.Lab.2019.190312 CrossRefGoogle ScholarPubMed
Kaplan, AP, Joseph, K, Shibayama, Y, Nakazawa, Y, Ghebrehiwet, B, Reddigari, S and Silverberg, M (1998) Bradykinin formation. Plasma and tissue pathways and cellular interactions. Clinical Reviews in Allergy and Immunology 16(4), 403429.CrossRefGoogle ScholarPubMed
Kverno, KS and Mangano, E (2021) Treatment-resistant depression: approaches to treatment. Journal of Psychosocial Nursing Mental Health Service 59(9), 711.Google ScholarPubMed
Lau, J, Rousseau, J, Kwon, D, Bénard, F and Lin, KS (2020) A systematic review of molecular imaging agents targeting bradykinin B1 and B2 receptors. Pharmaceuticals (Basel) 13(8), 199.CrossRefGoogle ScholarPubMed
Levant, A, Levy, E, Argaman, M and Fleisher-Berkovich, S (2006) Kinins and neuroinflammation: dual effect on prostaglandin synthesis. European Journal of Pharmacology 546(1-3), 197200.CrossRefGoogle ScholarPubMed
Luo, H, Wu, PF, Cao, Y, Jin, M, Shen, TT, Wang, J, Huang, JG, Han, QQ, He, JG, Deng, SL, Ni, L, Hu, ZL, Long, LH, Wang, F and Chen, JG (2020) Angiotensin-converting enzyme inhibitor rapidly ameliorates depressive-type behaviors via bradykinin-dependent activation of mammalian target of rapamycin complex 1. Biological Psychiatry 88(5), 415425.CrossRefGoogle ScholarPubMed
Malhi, GS and Mann, JJ (2018) Depression. The Lancet 392(10161), 22992312.CrossRefGoogle ScholarPubMed
Mamdani, M, Gomes, T, Greaves, S, Manji, S, Juurlink, DN, Tadrous, M, Kennedy, SH and Antoniou, T (2019) Association between angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and suicide. JAMA Network Open 2(10), e1913304.CrossRefGoogle ScholarPubMed
Maraschin, JC, Sestile, CC, Yabiku, CT, Roncon, CM, de Souza Fiaes, GC, Graeff, FG, Audi, EA and Zangrossi, H Jr (2020) Effects of the adjunctive treatment of antidepressants with opiorphin on a panic-like defensive response in rats. Behavioural Brain Research 378, 112263.CrossRefGoogle ScholarPubMed
Marceau, F, Bachelard, H, Bouthillier, J, Fortin, JP, Morissette, G, Bawolak, MT, Charest-Morin, X and Gera, L (2020) Bradykinin receptors: agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. International Immunopharmacology 82, 106305.CrossRefGoogle ScholarPubMed
Marceau, F and Regoli, D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nature Reviews. Drug Discovery 3(10), 845852.CrossRefGoogle ScholarPubMed
Melo, JC and Graeff, FG (1975) Effect of intracerebroventricular bradykinin and related peptides on rabbit operant behavior. The Journal of Pharmacology and Experimental Therapeutics 193(1), 110.Google ScholarPubMed
Melo, LA and Almeida-Santos, AF (2020) Neuropsychiatric properties of the ACE2/Ang-(1-7)/Mas pathway: a brief review. Protein and Peptide Letters 27(6), 476483.CrossRefGoogle ScholarPubMed
Moreira, FA, Gobira, PH, Viana, TG, Vicente, MA, Zangrossi, H Jr and Graeff, FG (2013) Modeling panic disorder in rodents. Cell and Tissue Research 354(1), 119125.CrossRefGoogle ScholarPubMed
Naaldijk, YM, Bittencourt, MC, Sack, U and Ulrich, H (2016) Kinins and microglial responses in bipolar disorder: a neuroinflammation hypothesis. Biological Chemistry 397(4), 283296.CrossRefGoogle ScholarPubMed
Nashold, BS Jr, Wilson, WP and Slaughter, DG (1969) Sensations evoked by stimulation in the midbrain of man. Journal of Neurosurgery 30(1), 1424.CrossRefGoogle ScholarPubMed
Noda, M, Kariura, Y, Amano, T, Manago, Y, Nishikawa, K, Aoki, S and Wada, K (2003) Expression and function of bradykinin receptors in microglia. Life Science 72(14), 15731581.CrossRefGoogle ScholarPubMed
Noda, M, Kariura, Y, Amano, T, Manago, Y, Nishikawa, K, Aoki, S and Wada, K (2004) Kinin receptors in cultured rat microglia. Neurochemistry International 45(2-3), 437442.CrossRefGoogle ScholarPubMed
Noda, M, Kariura, Y, Pannasch, U, Nishikawa, K, Wang, L, Seike, T, Ifuku, M, Kosai, Y, Wang, B, Nolte, C, Aoki, S, Kettenmann, H and Wada, K (2007a) Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. Journal of Neurochemistry 101(2), 397410.CrossRefGoogle ScholarPubMed
Noda, M, Sasaki, K, Ifuku, M and Wada, K (2007b) Multifunctional effects of bradykinin on glial cells in relation to potential anti-inflammatory effects. Neurochemistry International 51(2-4), 185–91.CrossRefGoogle ScholarPubMed
Ondetti, MA, Rubin, B and Cushman, DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196(4288), 441444.CrossRefGoogle ScholarPubMed
Othman, R, Cagnone, G, Joyal, JS, Vaucher, E and Couture, R (2021) Kinins and their receptors as potential therapeutic targets in retinal pathologies. Cells 10, 1913,CrossRefGoogle ScholarPubMed
Pape, K, Tamouza, R, Leboyer, M, Zipp, F (2019) Immunoneuropsychiatry — novel perspectives on brain disorders. Nature Review of Neurology 15(6), 317328.CrossRefGoogle ScholarPubMed
Popik, P, Kamysz, E, Kreczko, J and Wróbel, M (2010) Human opiorphin: the lack of physiological dependence, tolerance to antinociceptive effects and abuse liability in laboratory mice. Behavioural Brain Research 213(1), 8893.CrossRefGoogle ScholarPubMed
Poras, H, Bonnard, E, Dangé, E, Fournié-Zaluski, MC and Roques, BP (2014) New orally active dual enkephalinase inhibitors (DENKIs) for central and peripheral pain treatment. Journal of Medicinal Chemistry 57(13), 57485763.CrossRefGoogle ScholarPubMed
Preter, M and Klein, DF (2008) Panic, suffocation false alarms, separation anxiety and endogenous opioids. Progress in Neuro-Psychopharmacology and Biological Psychiatry 32(3), 603612.CrossRefGoogle ScholarPubMed
Raidoo, DM and Bhoola, KD (1998) Pathophysiology of the kallikrein-kinin system in mammalian nervous tissue. Pharmacology and Therapeutics 79(2), 105127.CrossRefGoogle ScholarPubMed
Ribeiro, SA, Corrado, AP and Graeff, FG (1971) Antinociceptive action of intraventricular bradykinin. Neuropharmacology 10(6), 725731.CrossRefGoogle ScholarPubMed
Rocha e Silva, M, Beraldo, WT and Rosenfeld, G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. The American Journal of Physiology 156(2), 261273.CrossRefGoogle ScholarPubMed
Rocha, NP, Simoes E Silva, AC, Prestes, TRR, Feracin, V, Machado, CA, Ferreira, RN, Teixeira, AL, de Miranda, AS (2018) RAS in the central nervous system: potential role in neuropsychiatric disorders. Current Medicinal Chemistry 25(28), 33333352.CrossRefGoogle Scholar
Sanches, M and Teixeira, AL (2021) The renin-angiotensin system, mood, and suicide: are there associations? World Journal of Psychiatry 11(9), 581588.CrossRefGoogle ScholarPubMed
Sartori, SB and Singewald, N (2019) Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacology and Therapeutics 204, 107402.CrossRefGoogle ScholarPubMed
Sestile, CC, Maraschin, JC, Rangel, MP, Santana, RG, Zangrossi, H Jr, Graeff, FG and Audi, EA (2017) B2-kinin receptors in the dorsal periaqueductal gray are implicated in the panicolytic-like effect of opiorphin. Progress in Neuro-Psychopharmacology and Biological Psychiatry 79, 493498.CrossRefGoogle ScholarPubMed
Shankman, SA, Gorka, SM, Katz, AC, Klein, DN, Markowitz, JC, Arnow, BA, Manber, R, Rothbaum, BO, Thase, ME, Schatzberg, AF, Keller, MB, Trivedi, MH and Kocsis, JH (2017) Side effects to antidepressant treatment in patients with depression and comorbid panic disorder. Journal of Clinical Psychiatry 78(4), 433440.CrossRefGoogle ScholarPubMed
Southerland, WA, Gillis, J, Kuppalli, S, Fonseca, A, Mendelson, A, Horine, SV, Bansal, N and Gulati, A (2021) Dual enkephalinase inhibitors and their role in chronic pain management. Current Pain and Headache Reports 25(5), 29.CrossRefGoogle ScholarPubMed
Strittmatter, SM, Lo, MM, Javitch, JA and Snyder, SH (1984) Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proceedings of the National Academy of Sciences of the United States of America 81(5), 15991603.CrossRefGoogle ScholarPubMed
Sugawara, A, Shimada, H, Otsubo, Y, Kouketsu, T, Suzuki, S and Yokoyama, A (2021) The usefulness of angiotensin-(1-7) and des-Arg9-bradykinin as novel biomarkers for metabolic syndrome. Hypertension Research 44(8), 10341036.CrossRefGoogle Scholar
Talbot, S and Couture, R (2012) Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Experimental Neurology 234(2), 373381.CrossRefGoogle ScholarPubMed
Trieu, BH, Remmers, BC, Toddes, C, Brandner, DD, Lefevre, EM, Kocharian, A, Retzlaff, CL, Dick, RM, Mashal, MA, Gauthier, EA, Xie, W, Zhang, Y, More, SS and Rothwell, PE (2022) Angiotensin-converting enzyme gates brain circuit-specific plasticity via an endogenous opioid. Science 375(6585), 11771182.CrossRefGoogle ScholarPubMed
Troubat, R, Barone, P, Leman, S, Desmidt, T, Cressant, A, Atanasova, B, Brizard, B, El Hage, W, Surget, A, Belzung, C and Camus, V (2021) Neuroinflammation and depression: a review. European Journal of Neuroscience 53(1), 151171.CrossRefGoogle ScholarPubMed
Viana, AF, Maciel, IS, Dornelles, FN, Figueiredo, CP, Siqueira, JM, Campos, MM and Calixto, JB (2010) Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide. Journal of Neuroinflammation 31(7), 98.CrossRefGoogle Scholar
Vicente, MA and Zangrossi, H Jr (2014) Involvement of 5-HT2C and 5-HT1A receptors of the basolateral nucleus of the amygdala in the anxiolytic effect of chronic antidepressant treatment. Neuropharmacology 79, 127135.CrossRefGoogle ScholarPubMed
Vilela-Costa, HH, Maraschin, JC, Casarotto, PC, Sant’Ana, AB, de Bortoli, VC, Vicente, MA, Campos, AC, Guimarães, FS and Zangrossi, H Jr (2021) Role of 5-HT1A and 5-HT2C receptors of the dorsal periaqueductal gray in the anxiety- and panic-modulating effects of antidepressants in rats. Behavioural Brain Research 404, 113159.CrossRefGoogle ScholarPubMed
Vuckovic, A, Cohen, BM and Zubenko, GS (1991) The use of captopril in treatment-resistant depression: an open trial. Journal of Clinical Psychopharmacology 11(6), 395396.CrossRefGoogle ScholarPubMed
Walker, K, Perkins, M and Dray, A (1995) Kinins and kinin receptors in the nervous system. Neurochemistry International 26(1), 116.CrossRefGoogle ScholarPubMed
Wisner, A, Dufour, E, Messaoudi, M, Nejdi, A, Marcel, A, Ungeheuer, MN and Rougeot, C (2006) Human opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America 103(47), 1797917984.CrossRefGoogle ScholarPubMed
Wittchen, HU, Jacobi, F, Rehm, J, Gustavsson, A, Svensson, M, Jönsson, B, Olesen, J, Allgulander, C, Alonso, J, Faravelli, C, Fratiglioni, L, Jennum, P, Lieb, R, Maercker, A, van Os, J, Preisig, M, Salvador-Carulla, L, Simon, R and Steinhausen, HC (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology 21(9), 655679.CrossRefGoogle ScholarPubMed
Zangrossi, H Jr and Graeff, FG (2014) Serotonin in anxiety and panic: contributions of the elevated T-maze. Neuroscience and Biobehavioral Reviews 46(Pt 3), 397406.CrossRefGoogle ScholarPubMed
Zubenko, GS and Nixon, RA (1984) Mood-elevating effect of captopril in depressed patients. American Journal of Psychiatry 141(1), 110111.Google ScholarPubMed