Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T06:03:43.137Z Has data issue: false hasContentIssue false

Frontal cortex reactivity differentiates between schizophrenic subtypes: auditory ERP-evidence

Published online by Cambridge University Press:  15 April 2016

B. Van Sweden*
Affiliation:
Dept. Clin. Neurophysiol, Medical Centre St-Jozef Bilzen, Belgium Dept. Psychiatry and Neuropsychology, Maastricht University, The Netherlands
M.G. Van Erp
Affiliation:
Dept. Clin. Neurophysiol, Medical Centre St-Jozef Bilzen, Belgium
F. Mesotten
Affiliation:
Psychiatry, Medical Centre St-Jozef Bilzen, Belgium
M. Maes
Affiliation:
Dept. Psychiatry and Neuropsychology, Maastricht University, The Netherlands
*
E. Van Havermaetestraat 38 9030 Ghent -, BelgiumFax.:, 00-32-89 50 90 79, Tel.: 00-32-89 50 91 11

Summary

Objectives: To extend the hypothesis that late auditory EP shifts represent pathophysiologcial markers in schizophrenia. Methods: Early negative (±100 μs) and late positive (>300 ms) auditory oddball and CNV responses are topographically compared in 3 medicated schizophrenic subtypes.

Results: Only late cortical responses differentiate between paranoid, residual and disorganised schizophrenia. Core features of the deficit residual state encompass low-voltage N2P3 responses and missing central initial CNV components. Both paranoid and disorganised schizophrenics show a distinctive reactivity of the frontal cortex. Paranoid schizophrenia is characterized by an extensive frontal spread of the task-related P3 response. Disorganised schizophrenia shows a specifically increased frontal CNV component indicating a nonspecific arousal reaction.

Conclusion: Combinations of late auditory EP-patterns fairly fit with the cognitive/behavioral status observed in schizophrenia spectrum disorders.

Type
Articles
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Liddle, PF, Friston, KJ, Frith, CD, Hirsch, SR, Jones, T. Frackowiak. Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry 1992:160:179186.Google Scholar
2.Kaplan, RD, Szechtman, H, Szechtman, FS, Nahmias, C, Ciarnelt, ES, List, S, Cleghorn, JM. Three clinical syndromes of schizophrenia in untreated subjects: relation to brain glucose activity measured bv PET. Schizophr Res 1993:11:4754.CrossRefGoogle Scholar
3.Chua, SE, McKenna, PJ. Schizophrenia - a brain disease? Br J Psychiatry 1995:166:563582.CrossRefGoogle ScholarPubMed
4.Schröder, J, Buchsbaum, MS, Siegel, BV, Geider, FJ, Niethammer, R. Structural and functional correlates of subsyndromes in chronic schizophrenia. Psychopathology 1995:28:3845.CrossRefGoogle ScholarPubMed
5.Mc Guire, PK, Silbersweig, DA, Wright, I, Murray, RM, David, AS, Frachowiak, DSJ, Frith, CD. Abnormal perception of inner speech: a psychological basis for auditory hallucinations. Lancet 1995:346:596600.Google Scholar
6.Silbersweig, DA, Stein, E, Frith, C, Cahill, C, Holmes, A, Grootoonk, S, Mc Kenna, P, Chua, SE, Schnorr, L, Jones, T, Frackowiak, RSJ. A functional anatomy of hallucinations in schizophrenia. Nature 1995:378:176179.Google Scholar
7.Scherg, M, Von Cramon, D. Evoked dipole source potentials of the human auditory cortex. Electroenceph Clin Neurophvsiol 1986:65:344360.CrossRefGoogle ScholarPubMed
8.Paller, KA, Mc Carthy, G, Roessler, E, Allison, T, Wood, CC. Potentials evoked in human and monkey medial temporal lobe during auditory and visual oddball paradigms. Electroenceph Clin Neurophvsiol 1992:84:269279.Google Scholar
9.Giard, MM, Perrin, F, Echallier, JF, Thevenet, M, Froment, JC, Pemier, J. Dissociation of temporal and frontal components in the human N1 wave: a scalp current density and dipole model analysis. Electroencephal Clin Neurophvsiol 1994:92:238252.Google Scholar
10.Naätänen, R, Alho, K. Generators of electrical and magnetic mismatch responses in humans. Brain Topography 1995:7:315320.Google Scholar
11.Näätänen R., The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 1990:13:201288.Google Scholar
12.Braff, DL. Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 1993:19:233259.Google Scholar
13.Ford, JM, Pfefferbaum, A, Roth, WT.P3 and schizophrenia. In: Friedman, D, Bruder, G (eds). Psychophysiology and Experimental Psychopathology. New York. New York Academy of Sciences. 1992. pp 146162.Google Scholar
14.Calls, SV, Shelley, AM, Ward, PB, Liebert, B, McConaghy, N, Andrews, S, Michic, PT. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 1995:152:213219.Google Scholar
15.Shelley, AM, Ward, PB, Catts, SV, Michie, PT, McConaghy, M. Mismatch negativity: an index of a preattenlive processing deficit in schizophrenia. Biol Psychiatry 1991:30:10591062.Google Scholar
16.Strandburg, RJ, Marsh, JT, Brown, WS, Asarnow, RF, Guthrie, D, Higa, J, Yee-Bradbury, CN, Nuechterlein, KH. Reduced attention-related negative potentials in schizophrenic adults. Psychophysiology 1994:31:272281.CrossRefGoogle ScholarPubMed
17.Javitt, DC, Schroeder, CE, Steinschneider, M, Arezzo, JC, Ritter, W, Vaughan, HG. Cognitive event-related potentials in human and non-human primates: implications for the PCP/NMDA model of schizophrenia. Electroenceph Clin Neurophvsiol Suppl 1995:44:161175.Google ScholarPubMed
18.Nurnberger, JI. Should a biological marker be sensitive and specific? Acta Psychiatr Scand 1992:86:14.Google Scholar
19.Duffy, FH, Burchfiel, JL, Lombroso, CT. Brain electrical activity mapping (BEAM): a method for extending the clinial utility of EEG and evoked potential data. Ann Neurol 1979:5:309321.Google Scholar
20.Goodin, D, Desmedt, J, Maurer, K, Nuwer, MR. IFCN recommended standards for long-latency auditory event-related potentials. Report of an IFCN committee. Electroencephal Clin Neurophvsiol 1994:91:1820.Google Scholar
21.Duffy, FH, Bartels, PH, Burchfiel, J. Significance probability mapping: an aid in the topoghraphic analysis of brain electrical activity. Electroenceph Clin Neurophvsiol 1981:51:455462.CrossRefGoogle Scholar
22.Van Sweden, B, Van Erp, MG, Mesotten, F. Auditory information processing in schizophrenia. Neuropsychobiology 1997:35:191196.Google Scholar
23.Bear, MF, Cooper, LN, Ebner, FF. A physiological basis of a theory of synapse modification. Science 1987:237:4248.Google Scholar
24.Javitt, DC, Domeshka, P, Grochowski, S, Ritler, W. Impaired mismatch negativity generation reflects wide-spread dysfunction of working memory in schizophrenia. Arch Gen Psychiatry 1995:52:650659.Google Scholar
25.Olnev J, W, Farber, NB. Glutamale-receptor dysfunction in schizophrenia. Arch Gen Psychiatry 1995:52:9981007.CrossRefGoogle Scholar
26.Birbaumer, N, Elberl, T, Canavan, AGM, Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Physiol Rev 1990:70:141.Google Scholar
27.Steriade, M, Gloor, P, LLinas, RR, Lopes da Silva, F, Mesulam, MJ. Basic mechanisms of rhythmic activities. Electroencephal Clin Neurophvsiol 1990:76:481508.Google Scholar
28.Elbert, T, Rockstroh, B. Threshold regulation - a key to the understanding of the combined dynamics of EEG and event-related potentials. J Psychophysiol 1987:4:317333.Google Scholar
29.Andreasen, MC, Arndt, S, Swayze, VW, Cizadle, MT, Flaum, M, O'Leary, D, Ehrhard, JC, Juh, WTC. Thalamic abnormalities in schizophrenia visualised through magnetic image averaging. Science 1994:226:294298.Google Scholar
30.Rockslroh, B, Müller, M, Klein, C. Scalp distribution of slow cortical potentials in schizophrenic patients. Pharmacopsychiatry 1994:27:5458.CrossRefGoogle Scholar
31.Rockstroh, B, Müller, M, Wagner, M, Cohen, R, Elberl, T. Event-related and motor responses to probes in a forewarned reaction time task in schizophrenic patients. Schizophr Res 1994:13:2334.Google Scholar
32.Van den Bosch, RJ, Rozendaal, M, Mol, JMFA. Slow potential correlates of frontal function, psychoses and negative svmploms. Psychiatry Res 1988:23:201208.Google Scholar
33.Van Sweden, B, Van Erp, MG, Mesotten, F, Crevits, L. Impaired early visual processing in disorganised schizophrenia. Acta Neurol Belg 1998:98:1720.Google Scholar
34.Frith, CD.The cognitive neuropsychology of schizophrenia. Hove Lawrence Erlbaum. 1992.Google Scholar
35.Squires-Wheeler, E, Friedman, D, Skodol, AE, Erlenmcyer-Kimling, L. A longitudinal study relating P3 amplitude to schizophrenic spectrum disorders and to global personality functioning. Biol Psychiatry 1993:33:774785.Google Scholar
36.Ford, JM, White, PM, Csernansky, JG, Faustman, WO, Roth, WT. Pf-efferbaum A. ERPs in schizophrenia: effects of antipsychotic medication. Biol Psychiatry 1994:36:153170.Google Scholar
37.Juckel, G, Müller-Schubert, A, Gaebel, W, Hegerl, U. Residual symptoms and P3(K) in schizophrenic outpatients. Psychiatry Res 1997:65:2332.Google Scholar
38.Crow, TJ. The two syndrome concept: origins and current status. Schizophr Bull 1985:11:471486.Google Scholar
39.Murray, RM, O'Callaghan, E, Castle, DY, Lewis, SW. A neurodeve-lopmental approach to the classification of schizophrenia. Schizophr Bull 1992:18:319332.CrossRefGoogle Scholar
40.Friedman, D, Squires-Wheeler, E. Event-related potentials (ERPs) as indicators of risk for schizophrenia. Schizophr Bull 1994:20:6374.CrossRefGoogle ScholarPubMed
41.O'Connor, S, Morzorate, S, Christian, JC, Li, TK. Heritable features of the auditory oddball event-related potential: peaks, latencies, morphology and topography. Electroenceph Clin Neurophvsiol 1994:92:115125.Google Scholar