Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T13:50:09.973Z Has data issue: false hasContentIssue false

Gut microbiota alterations in stable outpatients with schizophrenia: findings from a case–control study

Published online by Cambridge University Press:  12 December 2022

Błażej Misiak*
Affiliation:
Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
Patryk Piotrowski
Affiliation:
Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
Agnieszka Cyran
Affiliation:
Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
Krzysztof Kowalski
Affiliation:
Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
Jerzy Samochowiec
Affiliation:
Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
Marcin Jabłoński
Affiliation:
Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
Piotr Plichta
Affiliation:
Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
Łukasz Łaczmański
Affiliation:
Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
Paulina Żebrowska
Affiliation:
Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
Dorota Kujawa
Affiliation:
Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
Igor Łoniewski
Affiliation:
Department of Biochemical Sciences, Pomeranian Medical University, Szczecin, Poland Departmenrt of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
Mariusz Kaczmarczyk
Affiliation:
Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
*
Author for correspondence: Błażej Misiak, Email: blazej.misiak@umw.edu.pl

Abstract

Objective:

The pathogenesis of schizophrenia is multidimensional and intensively studied. The gut–brain axis disturbances might play a significant role in the development of schizophrenia.

Methods:

We compared the gut microbiota of 53 individuals with schizophrenia and 58 healthy controls, using the 16S rRNA sequencing method. Individuals with schizophrenia were assessed using the following scales: the Positive and Negative Syndrome Scale, the Calgary Depression Scale for Schizophrenia, the Social and Occupational Functioning Assessment Scale and the Repeatable Battery for the Assessment of Neuropsychological Status.

Results:

No significant between-group differences in α-diversity measures were observed. Increased abundance of Lactobacillales (order level), Bacilli (class level) and Actinobacteriota (phylum level) were found in individuals with schizophrenia regardless of potential confounding factors, and using two independent analytical approaches (the distance-based redundancy analysis and the generalised linear model analysis). Additionally, significant correlations between various bacterial taxa (the Bacteroidia class, the Actinobacteriota phylum, the Bacteroidota phylum, the Coriobacteriales order and the Coriobacteria class) and clinical manifestation (the severity of negative symptoms, performance of language abilities, social and occupational functioning) were observed.

Conclusions:

The present study indicates that gut microbiota alterations are present in European patients with schizophrenia. The abundance of certain bacterial taxa might be associated with the severity of negative symptoms, cognitive performance and general functioning. Nonetheless, additional studies are needed before the translation of our results into clinical practice.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, D, Addington, J and Matickatyndale, E (1994) Specificity of the Calgary depression scale for schizophrenics. Schizophrenia Research 11(3), 239244.CrossRefGoogle ScholarPubMed
Andreasen, NC, Carpenter, WT, Kane, JM, Lasser, RA, Marder, SR and Weinberger, DR (2005) Remission in schizophrenia: proposed criteria and rationale for consensus. The American Journal of Psychiatry 162(3), 441449.CrossRefGoogle ScholarPubMed
Binda, C, Lopetuso, LR, Rizzatti, G, Gibiino, G, Cennamo, V and Gasbarrini, A (2018) Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease 50(5), 421428.CrossRefGoogle ScholarPubMed
Bora, E (2019) Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychological Medicine 49(12), 19711979.CrossRefGoogle ScholarPubMed
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang K, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras, D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R and Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37(8), 852857.CrossRefGoogle Scholar
Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA and Holmes, SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13(7), 581583.CrossRefGoogle ScholarPubMed
Ezeoke, A, Mellor, A, Buckley, P and Miller, B (2013) A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophrenia Research 150(1), 245251.CrossRefGoogle ScholarPubMed
Fernandes, BS, Steiner, J, Bernstein, HG, Dodd, S, Pasco, JA, Dean, OM, Nardin, P, Gonçalves, CA and Berk, M (2016) C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Molecular Psychiatry 21(4), 554564.CrossRefGoogle Scholar
Galderisi, S, Mucci, A, Dollfus, S, Nordentoft, M, Falkai, P, Kaiser, S, Giordano, GM, Vandevelde, A, Nielsen, MØ., Glenthøj, LB, Sabé, M, Pezzella, P, Bitter, I and Gaebel, W (2021) EPA guidance on assessment of negative symptoms in schizophrenia. European Psychiatry 64(1), 23.CrossRefGoogle ScholarPubMed
Gupta, VK, Paul, S and Dutta, C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Frontiers in Microbiology 8, 1162.CrossRefGoogle ScholarPubMed
Hawrysz, I, Wadolowska, L, Slowinska, MA, Czerwinska, A and Golota, JJ (2020) Adherence to prudent and Mediterranean dietary patterns is inversely associated with lung cancer in moderate but not heavy male Polish smokers: a case-control study. Nutrients 12(12), 3788.CrossRefGoogle Scholar
He, Y, Kosciolek, T, Tang, J, Zhou, Y, Li, Z, Ma, X, Zhu, Q, Yuan, N, Yuan, L, Li, C, Jin, K, Knight, R, Tsuang, MT and Chen, X (2018) Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. European Psychiatry 53, 3745.CrossRefGoogle ScholarPubMed
Karpiński, P, Samochowiec, J, Frydecka, D, Sąsiadek, MM and Misiak, B (2018) Further evidence for depletion of peripheral blood natural killer cells in patients with schizophrenia: a computational deconvolution study. Schizophrenia Research 201, 243248.CrossRefGoogle ScholarPubMed
Kaur, H, Bose, C and Mande, SS (2019) Tryptophan metabolism by gut microbiome and gut-brain-axis: an in silico analysis. Frontiers in Neuroscience 13, 1365.CrossRefGoogle ScholarPubMed
Kay, SR, Fiszbein, A and Opler, LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13(2), 261276.CrossRefGoogle ScholarPubMed
Kowalski, K, Bogudzińska, B, Stańczykiewicz, B, Piotrowski, P, Bielawski, T, Samochowiec, J, Szczygieł, K, Plichta, P and Misiak, B (2022) The deficit schizophrenia subtype is associated with low adherence to the Mediterranean diet: findings from a case-control study. Journal of Clinical Medicine 11(3), 568.CrossRefGoogle Scholar
Krusinska, B, Hawrysz, I, Wadolowska, L, Slowinska, MA, Biernacki, M, Czerwinska, A and Golota, JJ (2018) Associations of Mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: a case-control study. Nutrients 10(4), 470.CrossRefGoogle Scholar
Laskaris, L, Zalesky, A, Weickert, CS, Di Biase, MA, Chana, G, Baune, BT, Bousman, C, Nelson, B, McGorry, P, Everall, I, Pantelis, C and Cropley, V (2019) Investigation of peripheral complement factors across stages of psychosis. Schizophrenia Research 204, 3037.CrossRefGoogle ScholarPubMed
Li, S, Zhuo, M, Huang, X, Huang, Y, Zhou, J, Xiong, D, Li, J, Liu, Y, Pan, Z, Li, H, Chen, J, Li, X, Xiang, Z, Wu, F and Wu, K (2020) Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 8, e9574.CrossRefGoogle ScholarPubMed
Ma, X, Asif, H, Dai, L, He, Y, Zheng, W, Wang, D, Ren, H, Tang, J, Li, C, Jin, K, Li, Z and Chen, X (2020) Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. Journal of Psychiatric Research 123, 136144.CrossRefGoogle ScholarPubMed
Manchia, M, Fontana, A, Panebianco, C, Paribello, P, Arzedi, C, Cossu, E, Garzilli, M, Montis, MA, Mura, A, Pisanu, C and Congiu, D (2021) Involvement of gut microbiota in schizophrenia and treatment resistance to antipsychotics. Biomedicines 9(8), 875.CrossRefGoogle ScholarPubMed
McGuffin, P, Farmer, A and Harvey, I (1991) A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Archives of General Psychiatry 48(8), 764770.CrossRefGoogle ScholarPubMed
McGuinness, AJ, Davis, JA, Dawson, SL, Loughman, A, Collie, F, O’Hely, M, Simpson, CA, Green, J, Marx, W, Hair, C, Guest, G, Mohebbi, M, Berk, M, Stupart, D, Watters, D and Jacka, FN (2022) A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Molecular Psychiatry 27(4), 19201935.CrossRefGoogle ScholarPubMed
Miller, BJ, Buckley, P, Seabolt, W, Mellor, A and Kirkpatrick, B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry 70(7), 663671.CrossRefGoogle ScholarPubMed
Misiak, B, Łoniewski, I, Marlicz, W, Frydecka, D, Szulc, A, Rudzki, L and Samochowiec, J (2020) The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Progress in Neuro-Psychopharmacology & Biological Psychiatry 102, 109951.CrossRefGoogle ScholarPubMed
Misiak, B, Stańczykiewicz, B, Kotowicz, K, Rybakowski, JK, Samochowiec, J and Frydecka, D (2018) Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: a systematic review. Schizophrenia Research 192, 1629.CrossRefGoogle ScholarPubMed
Mondelli, V, Ciufolini, S, Belvederi Murri, M, Bonaccorso, S, Di Forti, M, Giordano, A, Marques, TR, Zunszain, PA, Morgan, C, Murray, RM, Pariante, CM and Dazzan, P (2015) Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophrenia Bulletin 41(5), 11621170.CrossRefGoogle ScholarPubMed
Moustafa, AA, Garami, JK, Mahlberg, J, Golembieski, J, Keri, S, Misiak, B and Frydecka, D (2016) Cognitive function in schizophrenia: conflicting findings and future directions. Reviews in the Neurosciences 27(4), 435448.CrossRefGoogle ScholarPubMed
Nguyen, TT, Hathaway, H, Kosciolek, T, Knight, R and Jeste, DV (2021) Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophrenia Research 234, 2440.CrossRefGoogle ScholarPubMed
Nguyen, TT, Kosciolek, T, Maldonado, Y, Daly, RE, Martin, AS, McDonald, D, Knight, R and Jeste, DV (2019) Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophrenia Research 204, 2329. doi: 10.1016/j.schres.2018.09.014.CrossRefGoogle ScholarPubMed
Niedzwiedzka, E, Wadolowska, L and Kowalkowska, J (2019) Reproducibility of a non-quantitative food frequency questionnaire (62-item FFQ-6) and PCA-driven dietary pattern identification in 13-21-year-old females. Nutrients 11(9), 2183.CrossRefGoogle ScholarPubMed
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O.ʼHara, RB, Simpson, GL, Solymos, P, Stevens, MH, Szoecs, E and Wagner, H (2020) vegan: Community Ecology Package. R package version 2.5-7. Available at https://CRAN.R-project.org/package=vegan 13 June 2022.Google Scholar
Owen, MJ, Sawa, A and Mortensen, PB (2016) Schizophrenia. Lancet 388, 8697. doi: 10.1016/S0140-6736(15)01121-6.CrossRefGoogle ScholarPubMed
Pasternak, O, Kubicki, M and Shenton, ME (2016) In vivo imaging of neuroinflammation in schizophrenia. Schizophrenia Research 173(3), 200212.CrossRefGoogle ScholarPubMed
Pillinger, T, D’Ambrosio, E, McCutcheon, R and Howes, OD (2019) Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models. Molecular Psychiatry 24(6), 776794.CrossRefGoogle ScholarPubMed
Pomerleau, CS, Majchrzak, MJ and Pomerleau, OF (1989) Nicotine dependence and the Fagerström tolerance questionnaire: a brief review. Journal of Substance Abuse 1(4), 471477.CrossRefGoogle ScholarPubMed
Randolph, C, Tierney, MC, Mohr, E and Chase, TN (1998) The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology 20(3), 310319.CrossRefGoogle ScholarPubMed
Saary, P, Forslund, K, Bork, P and Hildebrand, F (2017) RTK: efficient rarefaction analysis of large datasets. Bioinformatics 33(16), 25942595.CrossRefGoogle ScholarPubMed
Samochowiec, J and Misiak, B (2021) Gut microbiota and microbiome in schizophrenia. Current Opinion in Psychiatry 34(5), 503507.CrossRefGoogle ScholarPubMed
Schwarz, E, Maukonen, J, Hyytiäinen, T, Kieseppä, T, Orešič, M, Sabunciyan, S, Mantere, O, Saarela, M, Yolken, R and Suvisaari, J (2018) Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophrenia Research 192, 398403.CrossRefGoogle ScholarPubMed
Sheehan, D (1998) The Mini International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview. The Journal of Clinical Psychiatry 59, 22.Google ScholarPubMed
Shen, Y, Xu, J, Li, Z, Huang, Y, Yuan, Y, Wang, J, Zhang, M, Hu, S and Liang, Y (2018) Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophrenia Research 197, 470477.CrossRefGoogle ScholarPubMed
Smith, GN, Ehmann, TS, Flynn, SW, MacEwan, GW, Tee, K, Kopala, LC, Thornton, AE, Schenk, CH and Honer, WG (2011) The assessment of symptom severity and functional impairment with DSM-IV axis V. Psychiatric Services 62(4), 411417.CrossRefGoogle ScholarPubMed
Strandwitz, P (2018) Neurotransmitter modulation by the gut microbiota. Brain Research 1693, 128133.CrossRefGoogle ScholarPubMed
Wang, Y, Naumann, U, Wright, ST and Warton, DI (2012) mvabund - an R package for model-based analysis of multivariate abundance data: the mvabund R package. Methods in Ecology and Evolution 3(3), 471474.CrossRefGoogle Scholar
Xu, R, Wu, B, Liang, J, He, F, Gu, W, Li, K, Luo, Y, Chen, J, Gao, Y, Wu, Z, Wang, Y, Zhou, W and Wang, M (2020) Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain, Behavior, and Immunity 85, 120127.CrossRefGoogle ScholarPubMed
Yogeswara, IBA, Maneerat, S and Haltrich, D (2020) Glutamate decarboxylase from lactic acid bacteria-A key enzyme in GABA synthesis. Microorganisms 8(12), 1923.CrossRefGoogle ScholarPubMed
Yolken, R, Prandovszky, E, Severance, EG, Hatfield, G and Dickerson, F (2021) The oropharyngeal microbiome is altered in individuals with schizophrenia and mania. Schizophrenia Research 234, 51–17.CrossRefGoogle ScholarPubMed
Zheng, P, Zeng, B, Liu, M, Chen, J, Pan, J, Han, Y, Liu, Y, Cheng, K, Zhou, C, Wang, H, Zhou, X, Gui, S, Perry, SW, Wong, M-L, Licinio, J, Wei, H and Xie, P (2019) The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances 5(2), 8317.CrossRefGoogle ScholarPubMed
Zhu, C, Zheng, M, Ali, U, Xia, Q, Wang, Z, Chenlong Yao, L, Chen, Y, Yan, J, Wang, K, Chen, J and Zhang, X (2021) Association between abundance of Haemophilus in the gut microbiota and negative symptoms of schizophrenia. Frontiers in Psychiatry 12, 685910.CrossRefGoogle ScholarPubMed
Zhu, F, Guo, R, Wang, W, Ju, Y, Wang, Q, Ma, Q, Sun, Q, Fan, Y, Xie, Y, Yang, Z, Jie, Z, Zhao, B, Xiao, L, Yang, L, Zhang, T, Liu, B, Guo, L, He, X, Chen, Y, Chen, C, Gao, C, Xu, X, Yang, H, Wang, J, Dang, Y, Madsen, L, Brix, S, Kristiansen, K, Jia, H and Ma, X (2020a) Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry 25(11), 29052918.CrossRefGoogle ScholarPubMed
Zhu, F, Ju, Y, Wang, W, Wang, Q, Guo, R, Ma, Q, Sun, Q, Fan, Y, Xie, Y, Yang, Z, Jie, Z, Zhao, B, Xiao, L, Yang, L, Zhang, T, Feng, J, Guo, L, He, X, Chen, Y, Chen, C, Gao, C, Xu, X, Yang, H, Wang, J, Dang, Y, Madsen, L, Brix, S, Kristiansen, K, Jia, H and Ma, X (2020b) Metagenome-wide association of gut microbiome features for schizophrenia. Nature Communications 11(1), 1612.CrossRefGoogle ScholarPubMed
Supplementary material: File

Misiak et al. supplementary material

Tables S1-S3

Download Misiak et al. supplementary material(File)
File 19.5 KB