Skip to main content
×
Home
    • Aa
    • Aa

Visually evoked potentials, NMDA receptors and the magnocellular system in schizophrenia

  • Bernt C. Skottun (a1) and John R. Skoyles (a2) (a3)
Abstract

Background: It has been claimed that schizophrenia can be linked to the magnocellular system by way of N-methyl-d-aspartate (NMDA) receptors. The present report examines this claim.

Methods: A review is made of relevant research literature.

Results: The NMDA studies that have been referenced to connect visual deficits in schizophrenia to the magnocellular system are based on the cat, a species whose visual system is fundamentally different from that of primates. The cat visual system cannot easily be divided into magno- and a parvocellular portions.

Conclusions: Owing to the substantial differences between the visual systems of cats and primates, it is difficult to link sensory abnormalities in schizophrenia specifically to the magnocellular system based on data from the cat.

Copyright
Corresponding author
John R. Skoyles, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London NW1 2HE, UK. Tel/Fax: +0207 6794325; E-mail: j.skoyles@ucl.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. SH Hendry , RC. Reid The koniocellular pathway in primate vision. Annu Rev Neurosci 2000;23:127153.

2. WH Merigan , JH. Maunsell How parallel are the primate visual pathways? Annu Rev Neurosci 1993;16:369402.

3. MF Green , KH Nuechterlein , J. Mintz Backward masking in schizophrenia and mania. II. Specifying the visual channels. Arch Gen Psychiatry 1994;51:945951.

4. PD Butler , V Zemon , I Schechter Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 2005;62:495504.

5. PD Butler , DC. Javitt Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 2005;18:151157.

6. BC. Skottun The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Res 2000;40:111127.

7. BC Skottun , JR. Skoyles Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res 2007;47:29232933.

8. AH Gutherie , JE McDowell , BR Hammond Jr. Scotopic sensitivity in schizophrenia. Schizophr Res 2006;84:378385.

9. BC Skottun , JR. Skoyles Are masking abnormalities in schizophrenia limited to backward masking? Int J Neurosci 2009;119:88104.

10. BC Skottun , JR. Skoyles The time course of visual backward masking deficits in schizophrenia. J Integr Neurosci 2011;10:3345.

11. LD Selemon , A. Begovic Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007;151:110.

12. KA Dorph-Petersen , D Caric , R Saghafi , W Zhang , AR Sampson , DA. Lewis Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 2009;117:369384.

13. PD Butler , SM Silverstein , SC. Dakin Visual perception and its impairment in schizophrenia. Biol Psychiatry 2008;64:4047.

14. DC. Javitt When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 2009;5:249275.

17. JT Kantrowitz , DC. Javitt N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010;83:108121.

19. BC Skottun , JR. Skoyles On identifying magnocellular and parvocellular responses on the basis of contrast-response functions. Schizophrenia Bull 2011;37:2326.

20. R Shapley , VH. Perry Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 1986;9:229235.

22. E Kaplan , RM. Shapley X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol 1982;330:125143.

23. DH Hubel , TN. Wiesel Integrative action in the cat's lateral geniculate body. J Physiol 1961;155:385398.

24. C Enroth-Cugell , JG. Robson The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 1966;187:517552.

25. B Dreher , Y Fukada , RW. Rodieck Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. J Physiol 1976;258:433452.

26. SM Sherman , JR Wilson , JH Kaas , SV. Webb X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science 1976;192:475477.

27. JD Crook , BB Peterson , OS Packer , FR Robinson , JB Troy , DM. Dacey Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J Neurosci 2008;28:1127711291.

28. C Blakemore , F. Vital-Durand Organization and post-natal development of the monkey's lateral geniculate nucleus. J Physiol 1986;380:453491.

30. R Shapley , E Kaplan , R. Soodak Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 1981;292:543545.

33. AG Leventhal , RW Rodieck , B. Dreher Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 1981;213:11391142.

35. AK Goodchild , KK Ghosh , PR. Martin Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, Macaque Monkey, cat, and the Marmoset Callithrix jacchus. J Comp Neurol 1996;366:5575.

38. BC Skottun , JR. Skoyles Is coherent motion an appropriate test for magnocellular sensitivity? Brain Cognit 2006;61:172180.

39. BC. Skottun On the use of visual motion perception to assess magnocellular integrity. J Integr Neurosci 2011;10:1532.

42. EA Lachica , PD Beck , VA. Casagrande Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Nat Acad Sci U.S.A. 1992;89:35663570.

43. JB Levitt , T Yoshioka , JS. Lund Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. J Compar Neurol 1994;342:551570.

44. KA. Martin Parallel pathways converge. Current Biol 1992;2:555557.

47. A Sawatari , EM. Callaway Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 1996;380:442446.

48. LC Sincich , JC. Horton Divided by cytochrome oxidase: a map of the projections from V1 to V2 in Macaques. Science 2002;295:17341737.

49. TR Vidyasagar , JJ Kulikowski , DM Lipnicki , B. Dreher Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. Eur J Neurosci 2002;16:945956.

51. SG Solomon , JW Peirce , NT Dhruv , P. Lennie Profound contrast adaptation early in the visual pathway. Neuron 2004;42:155162.

52. L Maffei , A Fiorentini , S. Bisti Neural correlate of perceptual adaptation to gratings. Science 1973;182:10361038.

53. JA Movshon , P. Lennie Pattern-selective adaptation in visual cortical neurones. Nature 1979;278:850852.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Neuropsychiatrica
  • ISSN: 0924-2708
  • EISSN: 1601-5215
  • URL: /core/journals/acta-neuropsychiatrica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 115 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th March 2017. This data will be updated every 24 hours.