Skip to main content
×
×
Home

Visually evoked potentials, NMDA receptors and the magnocellular system in schizophrenia

  • Bernt C. Skottun (a1) and John R. Skoyles (a2) (a3)
Extract

Background: It has been claimed that schizophrenia can be linked to the magnocellular system by way of N-methyl-d-aspartate (NMDA) receptors. The present report examines this claim.

Methods: A review is made of relevant research literature.

Results: The NMDA studies that have been referenced to connect visual deficits in schizophrenia to the magnocellular system are based on the cat, a species whose visual system is fundamentally different from that of primates. The cat visual system cannot easily be divided into magno- and a parvocellular portions.

Conclusions: Owing to the substantial differences between the visual systems of cats and primates, it is difficult to link sensory abnormalities in schizophrenia specifically to the magnocellular system based on data from the cat.

Copyright
Corresponding author
John R. Skoyles, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London NW1 2HE, UK. Tel/Fax: +0207 6794325; E-mail: j.skoyles@ucl.ac.uk
References
Hide All
1.Hendry SH, Reid RC.The koniocellular pathway in primate vision. Annu Rev Neurosci 2000;23:127153.
2.Merigan WH, Maunsell JH.How parallel are the primate visual pathways? Annu Rev Neurosci 1993;16:369402.
3.Green MF, Nuechterlein KH, Mintz J.Backward masking in schizophrenia and mania. II. Specifying the visual channels. Arch Gen Psychiatry 1994;51:945951.
4.Butler PD, Zemon V, Schechter I et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 2005;62:495504.
5.Butler PD, Javitt DC.Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 2005;18:151157.
6.Skottun BC.The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Res 2000;40:111127.
7.Skottun BC, Skoyles JR.Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res 2007;47:29232933.
8.Gutherie AH, McDowell JE, Hammond BR Jr.Scotopic sensitivity in schizophrenia. Schizophr Res 2006;84:378385.
9.Skottun BC, Skoyles JR.Are masking abnormalities in schizophrenia limited to backward masking? Int J Neurosci 2009;119:88104.
10.Skottun BC, Skoyles JR.The time course of visual backward masking deficits in schizophrenia. J Integr Neurosci 2011;10:3345.
11.Selemon LD, Begovic A.Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007;151:110.
12.Dorph-Petersen KA, Caric D, Saghafi R, Zhang W, Sampson AR, Lewis DA.Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 2009;117:369384.
13.Butler PD, Silverstein SM, Dakin SC.Visual perception and its impairment in schizophrenia. Biol Psychiatry 2008;64:4047.
14.Javitt DC.When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 2009;5:249275.
15.Kwon YH, Esguerra M, Sur M.NMDA and non-NMDA receptors mediate visual responses of neurons in the cat's lateral geniculate nucleus. J Neurophysiol 1991;66:414428.
16.Kwon YH, Nelson SB, Toth LJ, Sur M.Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. J Neurophysiol 1992;68:182196.
17.Kantrowitz JT, Javitt DC.N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010;83:108121.
18.Levitt JB, Schumer RA, Sherman SM, Spear PD, Movshon JA.Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. J Neurophysiol 2001;85:21112129.
19.Skottun BC, Skoyles JR.On identifying magnocellular and parvocellular responses on the basis of contrast-response functions. Schizophrenia Bull 2011;37:2326.
20.Shapley R, Perry VH.Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 1986;9:229235.
21.Livingstone MS, Hubel DH.Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 1987;7:34163468.
22.Kaplan E, Shapley RM.X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol 1982;330:125143.
23.Hubel DH, Wiesel TN.Integrative action in the cat's lateral geniculate body. J Physiol 1961;155:385398.
24.Enroth-Cugell C, Robson JG.The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 1966;187:517552.
25.Dreher B, Fukada Y, Rodieck RW.Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. J Physiol 1976;258:433452.
26.Sherman SM, Wilson JR, Kaas JH, Webb SV.X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science 1976;192:475477.
27.Crook JD, Peterson BB, Packer OS, Robinson FR, Troy JB, Dacey DM.Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J Neurosci 2008;28:1127711291.
28.Blakemore C, Vital-Durand F.Organization and post-natal development of the monkey's lateral geniculate nucleus. J Physiol 1986;380:453491.
29.Marrocco RT, McClurkin JW, Young RA.Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. J Neurosci 1982;2:12751291.
30.Shapley R, Kaplan E, Soodak R.Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 1981;292:543545.
31.Saul AB.Lagged cells in alert monkey lateral geniculate nucleus. Vis Neurosci 2008;25:647659.
32.Dacey DM, Brace S.A coupled network for parasol but not midget ganglion cells in the primate retina. Vis Neurosci 1992;9:279290.
33.Leventhal AG, Rodieck RW, Dreher B.Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 1981;213:11391142.
34.Sun H, Smithson HE, Zaidi Q, Lee BB.Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Vis Neurosci 2006;23:441446.
35.Goodchild AK, Ghosh KK, Martin PR.Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, Macaque Monkey, cat, and the Marmoset Callithrix jacchus. J Comp Neurol 1996;366:5575.
36.Heggelund P, Hartveit E.Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. J Neurophysiol 1990;63:13471360.
37.Rivadulla C, Sharma J, Sur M.Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J Neurosci 2001;21:17101719.
38.Skottun BC, Skoyles JR.Is coherent motion an appropriate test for magnocellular sensitivity? Brain Cognit 2006;61:172180.
39.Skottun BC.On the use of visual motion perception to assess magnocellular integrity. J Integr Neurosci 2011;10:1532.
40.Merigan WH, Byrne CE, Maunsell JH.Does primate motion perception depend on the magnocellular pathway? J Neurosci 1991;11:34223429.
41.Malpeli JG, Schiller PH, Colby CL.Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. J Neurophysiol 1981;46:11021119.
42.Lachica EA, Beck PD, Casagrande VA.Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Nat Acad Sci U.S.A. 1992;89:35663570.
43.Levitt JB, Yoshioka T, Lund JS.Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. J Compar Neurol 1994;342:551570.
44.Martin KA.Parallel pathways converge. Current Biol 1992;2:555557.
45.Merigan WH, Maunsell JH.Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 1990;5:347352.
46.Nealey TA, Maunsell JH.Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci 1994;14:20692079.
47.Sawatari A, Callaway EM.Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 1996;380:442446.
48.Sincich LC, Horton JC.Divided by cytochrome oxidase: a map of the projections from V1 to V2 in Macaques. Science 2002;295:17341737.
49.Vidyasagar TR, Kulikowski JJ, Lipnicki DM, Dreher B.Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. Eur J Neurosci 2002;16:945956.
50.Ohzawa I, Sclar G, Freeman RD.Contrast gain control in the cat's visual system. J Neurophysiol 1985;54:651667.
51.Solomon SG, Peirce JW, Dhruv NT, Lennie P.Profound contrast adaptation early in the visual pathway. Neuron 2004;42:155162.
52.Maffei L, Fiorentini A, Bisti S.Neural correlate of perceptual adaptation to gratings. Science 1973;182:10361038.
53.Movshon JA, Lennie P.Pattern-selective adaptation in visual cortical neurones. Nature 1979;278:850852.
54.Shou T, Li X, Zhou Y, Hu B.Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings. Vis Neurosci 1996;13:605613.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Neuropsychiatrica
  • ISSN: 0924-2708
  • EISSN: 1601-5215
  • URL: /core/journals/acta-neuropsychiatrica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 147 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th January 2018. This data will be updated every 24 hours.