Home
Hostname: page-component-684899dbb8-ct24h Total loading time: 0.236 Render date: 2022-05-16T12:04:18.570Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } Advances in Applied Mathematics and Mechanics

# Contaminant Flow and Transport Simulation in Cracked Porous Media Using Locally Conservative Schemes

Published online by Cambridge University Press:  03 June 2015

*
Corresponding author. URL:http://web.kaust.edu.sa/faculty/ShuyuSun/, Email: shuyu.sun@kaust.edu.sa

## Abstract

The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall transport of contaminant wastes. In order to precisely describe the whole process, we firstly build the mathematical model to simulate this problem numerically. Taking into consideration of the characteristics of contaminant flow, we employ two partial differential equations to formulate the whole problem. One is flow equation; the other is reactive transport equation. The first equation is used to describe the total flow of contaminant wastes, which is based on Darcy law. The second one will characterize the adsorption, diffusion and convection behavior of contaminant species, which describes most features of contaminant flow we are interested in. After the construction of numerical model, we apply locally conservative and compatible algorithms to solve this mathematical model. Specifically, we apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous Galerkin (DG) method for the transport equation. MFE has a good convergence rate and numerical accuracy for Darcy velocity. DG is more flexible and can be used to deal with irregular meshes, as well as little numerical diffusion. With these two numerical means, we investigate the sensitivity analysis of different features of contaminant flow in our model, such as diffusion, permeability and fracture density. In particular, we study Kd values which represent the distribution of contaminant wastes between the solid and liquid phases. We also make omparisons of two different schemes and discuss the advantages of both methods.

Type
Research Article
Information
Advances in Applied Mathematics and Mechanics , August 2012 , pp. 389 - 421

## Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

## References

Aizinger, V., Dawson, C. N., Cockburn, B. and Castillo, P., The local discontinuous Galerkin method for contaminant transport, Adv. Water. Res., 24 (2001), pp. 7387.CrossRefGoogle Scholar
Arbogast, T., Brayant, S., Dawson, C. N., Saaf, F. and Wang, C., Compuational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation, J. Comput. Appl. Math., 74 (1996), pp. 1932.CrossRefGoogle Scholar
Arbogast, T. and Wheeler, M. F., A characteristics-mixed finite element method for advec-tion dominated transport problems, SIAM J. Numer. Anal., 32 (1995), pp. 404424.CrossRefGoogle Scholar
Arbogast, T., Wheeler, M. F. and Zhang, N. Y., A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33 (1996), pp. 16691687.CrossRefGoogle Scholar
Aziz, A. K. and Liu, J. L., A Galerkin method for the forward-backward heat equation, Math. Comput., 56 (1991), pp. 3544.CrossRefGoogle Scholar
Aziz, A. K. and Monk, P., Continuous finite element in space and time for the heat equation, Math. Comput., 52 (1989), pp. 255274.CrossRefGoogle Scholar
Cowsar, L. C., Dupont, T. F. and Wheeler, M. F., A priori estimates for mixed finite element methods for the wave equation, Comput. Methods. Appl. Mech. Eng., 82 (1990), pp. 205222.CrossRefGoogle Scholar
Chen, Z., Finite Element Methods and Their Applications, Springer-Verlag, Heidelberg, ISBN-3-540-24078-0.Google Scholar
Dawson, C. N., Godunov-mixed methods for advection-diffusion equations in one space dime-sion, SIAM J. Numer. Anal., 28 (1991), pp. 12821309.CrossRefGoogle Scholar
Dawson, C. N., Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations, SIAM J. Numer. Anal., 35(5) (1998), pp. 17091724.CrossRefGoogle Scholar
Dawson, C. N., Sun, S. and Wheeler, M. F., Compatible algorithms for coupled flow and transport, Comput. Methods. Appl. Mech. Eng., 193 (2004), pp. 25652580.CrossRefGoogle Scholar
Dong, C., Sun, S. and Taylor, G. A., Numerical modeling of contaminant transport in fractured porous media using mixed finite element and finite volume methods, J. Porous. Media., 14(3) (2011), pp. 219242.Google Scholar
Duguid, J. O. and Lee, P. C. Y., Flow in fractured porous media, Water. Res. Research., 13(3) (1977), PP. 558566, doi:10.1029/WR013i003p00558.CrossRefGoogle Scholar
French, D. A. and Peterson, T. E., A continuous space-time finite element method for the wave equation, Math. Comput., 65 (1996), pp. 491506.CrossRefGoogle Scholar
Gallo, C. and Manzini, G., 2D Numerical modeling of bioremediation in heterogeneous saturated soils, Trans. Porous. Media., 31 (1998), pp. 6788.CrossRefGoogle Scholar
Gallo, C. and Manzini, G., Mixed finite element/volume approach for solving biodegradation transport in groundwater, Int. J. Number. Meth. Fluids., 26 (1998), pp. 533556.3.0.CO;2-D>CrossRefGoogle Scholar
Glowinski, R., Kinton, W. A. and Wheeler, M. F., A mixed finite element formulation for boundary controllability of the wave equation, Int. J. Numer. Methods. Eng., 27 (1989), pp. 623635.CrossRefGoogle Scholar
Jiang, L. and Mishev, I. D., Mixed multiscale finite volume methods for elliptic problems in two-phase flow simulations, Commun. Comput. Phys., 11 (2012), pp. 1947.CrossRefGoogle Scholar
Kang, Q.-J., Lichtner, P. C. and Janecky, D. R., Lattice Boltzmann Method for Reacting Flows in Porous Media, Adv. Appl. Math. Mech., 2 (2010), pp. 545563.Google Scholar
Kim, J. and Deo, M., Finite element, discrete fracture model for multiphase flow in porous media, AIChE J., 46(6) (2000), pp. 11201130.CrossRefGoogle Scholar
Karimifard, M. and Firoozabadi, A., Numerical simulation of water injection in 2-d fractured media using discrete-fracture model, SPE Reservoir. Eval. Eng., 4 (2003), pp. 117126.CrossRefGoogle Scholar
Layton, W. J., Schieweck, F. and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40(6) (2003), pp. 21952218.CrossRefGoogle Scholar
Nakayama, S., Takagi, I. and Higashi, K., A semi-analytical solution for advection-dispersion migration of radionuclides through two-layered geologic media, Mere. Fac. Eng., 48 (1986), pp. 227239.Google Scholar
Sahimi, M., Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, 1995.Google Scholar
Siegel, P., Mose, R., Ackerer, P. and Jaffre, J., Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite element, Int. J. Number. Meth. Fluids., 24 (1997), pp. 595613.3.0.CO;2-I>CrossRefGoogle Scholar
Sun, S., Discontinuous Galerkin Methods for Reactive Transport in Porous Media, Ph.D. dissertation, The University of Texas at Austin, 2003.Google Scholar
Sun, S., Riviere, B. and Wheeler, M. F., A combined mixed finite element and discontinuous Galerkin method for miscible displacement problems in porous media, in: Proceedings of International Symposium on Computational and Applied PDEs held at Zhangjiajie National Park of China, pp. 321348, 2002.Google Scholar
Sun, S. and Wheeler, M. F., Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. Numer. Math., 52(2-3) (2005), pp. 273298.CrossRefGoogle Scholar
Sun, S. and Wheeler, M. F., A posteriori error estimation and dynamic adaptivity for symmetric discontinuous Galerkin approximations of reactive transport problems, Comput. Methods. Appl. Mech. Eng., 195 (2006), pp. 632652.CrossRefGoogle Scholar
Sun, S. and Wheeler, M. F., Projections of velocity data for the compatibility with transport, Comput. Methods. Appl. Mech. Eng., 195 (2006), pp. 653673.CrossRefGoogle Scholar
Sun, S. and Wheeler, M. F., A dynamic, adaptive, locally conservative and nonconforming solution strategy for transport phenomena in chemical engineering, Chem. Eng. Commun., 193(12) (2006), pp. 15271545.CrossRefGoogle Scholar
Sarkar, S. and Toksöz, M. N., Fluid Flow Simulation in Fractured Reservoirs, Report, Annual Consortium Meeting, 2002.Google Scholar
Yu, M. and Dougherty, D. E., FCT Model of contaminant Transport on Unstructured Meshes, Volume 1, pp. 199206, Computational Mechanicas Publications, 1998.Google Scholar

# Save article to Kindle

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Contaminant Flow and Transport Simulation in Cracked Porous Media Using Locally Conservative Schemes
Available formats
×

# Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Contaminant Flow and Transport Simulation in Cracked Porous Media Using Locally Conservative Schemes
Available formats
×

# Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Contaminant Flow and Transport Simulation in Cracked Porous Media Using Locally Conservative Schemes
Available formats
×
×