[1]
Berger, M. J. and Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53 (1984), pp. 484.

[2]
Berger, M. J. and Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82 (1989), pp. 64–84.

[3]
Berger, M. and Rigoutsos, I., An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man. Cybern, 21 (1991), pp. 1278–1286.

[4]
Colella, P., Graves, D. T., Ligocki, T. J., Martin, D. F., Modiano, D., Serafini, D. B. and Straalen, B. V., *CHOMBO: software package for AMR applications: design document*, Technical report, Lawrence Berkeley National Laboratory, Applied Numerical Algorithms Group, NERSC Division; CA, USA, 2003

[5]
Courant, R., Issacson, E. and Rees, M., On the solution of nonlinear hyperbolic differential equations by finite difference, Commun. Pure Appl. Math., 5 (1952), pp. 243–255.

[6]
Dziuk, G. and Elliott, C., Finite element methods for surface PDEs, Acta Numer., 22 (2013), pp. 289–396.

[7]
Dupont, T. F. and Liu, Y., Back and forth error compensation and correction methods for semi-Lagrangian schemes with applications to level set interface computations, Math. Comput., 76 (2007), pp. 647–668.

[8]
Elliott, C. M., Stinner, B., Styles, V. and Welford, R., Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31 (2011), pp. 786.

[9]
Grande, J., Eulerian finite element methods for parabolic equations on moving surfaces, SIAM J. Sci. Comput., 36 (2014), pp. B248–B271.

[10]
Gross, S. and Reusken, A., Numerical Methods for Two-Phase Incompressible Flows, Springer, 2011.

[11]
Hansboa, P., Larsonb, M. G. and Zahedi, S., Characteristic cut finite element methods for convection-diffusion problems on time dependent surfaces, Comput. Meth. Appl. Mech. Eng., 293 (2015), pp. 431–461.

[12]
Lowengrub, J., Xu, J.-J. and Voigt, A., Surface phase separation and flow in a simple model of multicomponent drops and vesicles, Fluid Dyn. Material Pro., 3 (2007), pp. 1–19.

[13]
MacNeice, P., Olson, K. M., Mobarry, C., Defainchtein, R. and Packer, C., PARAMESH: A parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., v126 (2000), pp. 330–354.

[14]
Min, C. and Gibou, F., A second order accurate level set method on non-graded adaptive cartesian grids, J. Comput. Phys., 225 (2007), pp. 300–321.

[15]
Mitran, S., *BEARCLAW: a code for multiphysics applications with embedded boundaries: users manual*, Technical report, Dept. of Math., Univ. of North Carolina, NC, USA, 2006.

[16]
Olshanskii, M. A., Reusken, A. and Xu, X., An Eulerian space-time finite element method for diffusion problems on evolving surfaces, SIAM J. Numer. Anal., 52 (2014), pp. 1354–1377.

[17]
Olshanskii, M. A. and Reusken, A., Error analysis of a space-time finite element method for solving PDEs on evolving surfaces, SIAM J. Numer. Anal., 52 (2014), pp. 2092–2120.

[18]
Osher, S. and Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12.

[19]
Shu, C., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Springer, 1998.

[20]
Strain, J., Semi-Lagrangian methods for level set equations, J. Comput. Phys., 151 (1999), pp. 498–533.

[21]
Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), pp. 146–159.

[22]
Sussman, M., Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H. and Welcomey, M. L., An adaptive level set approach for incompressible two-Phase flows, J. Comput. Phys., 184 (1999), pp. 81–124.

[23]
Teigen, K. E., Li, X., Lowengrub, J., Wang, F. and Voigt, A., A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 7 (2009), pp. 1009–1037.

[24]
Teigen, K. E. and Munkejord, S. T., Influence of surfactant on drop deformation in an electric field, Phys. Fluids, 22 (2010), 112104.

[25]
Wang, Y., Simakhina, S. and Sussman, M., A hybrid level set-volume constraint method for incompressible two-phase flow, J. Comput. Phys., 231 (2012), pp. 6438–6407.

[26]
Xu, J.-J. and Zhao, H., An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput., 19 (2003), pp. 573–594.

[27]
Xu, J.-J., Yuan, H. Z. and Huang, Y. Q., A 3D level-set method for solving convection-diffusion along moving surfaces (in Chinese), Sci. Sinna Math., 42(5) (2012), pp. 445–454.

[28]
Xu, J.-J., Li, Z., Lowengrub, J. and Zhao, H., A level set method for solving interfacial flows with surfactant, J. Comput. Phys., 212 (2006), pp. 590–616.

[29]
Xu, J.-J., Li, Z., Lowengrub, J. and Zhao, H., Numerical study of surfactant-laden drop-drop interactions, Commun. Comput. Phys., 10 (2011), pp. 453–473.

[30]
Xu, J.-J., Yang, Y. and Lowengrub, J., A level-set continuum method for two-phase flows with insoluble surfactant, J. Comput. Phys., 231 (2012), pp. 5897–5909.

[31]
Xu, J.-J., Huang, Y., Lai, M.-C. and Li, Z., A coupled immersed interface and level set method for three-dimensional interfacial flows with insoluble surfactant, Commun. Comput. Phys., 15 (2014), pp. 451–469.

[32]
Xu, J.-J. and Ren, W., A level-set method for two-phase flows with moving contact line and insoluble surfactant, J. Comput. Phys., 263 (2014), pp. 71–90.

[33]
Shi, W. D., Xu, J.-J. and Shi, S., *A simple implementation of the semi-Lagrangian level-set method*, Adv. Appl. Math. Mech., 2016 (in press).

[34]
Zhao, H., Chan, T., Merriman, B. and Osher, S., A variational level set approach to multi-phase motion, J. Comput. Phys., 127 (1996), pp. 179–195.