[1]
Adams R. A. and Fournier J. J., Sobolev Spaces, Academic Press, 2003.

[2]
Ainsworth M. and Oden J. T., A posteriori error estimators in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), pp. 1–88.

[3]
Brenner S. C. and Scott L. R., The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, 2008.

[4]
Babuška L. and Suri M., The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 (1987), pp. 750–776.

[5]
Bernardi C. and Maday Y., Polynomial approximation of some singular functions, Appl. Anal., 42 (1991), pp. 1–32.

[6]
Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, 1987.

[7]
Chen Y. P. and Tang T., Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comput., 79 (2010), pp. 147–167.

[8]
Chen Y. P., Xia N. S. and Yi N. Y., A Legendre Galerkin spectral method for optimal control problems, J. Syst. Sci. Complex., 24 (2011), pp. 663–671.

[9]
Ciarlet P. G., The Finite Element Methods for Elliptic Problems, SIAM, 2002.

[10]
Düster A., Bröker H. and Rank E., The p-version of the finite element method for three-dimensional curved thin walled structures, Int. J. Numer. Meth. Eng., 52 (2001), pp. 673–703.

[11]
Gui W. and Babuška I., *The h, p and h*^{p} versions of the finite element method in 1 dimension: Part 1. The error analysis of the p-version (No. BN-1036), Maryland Univ. College Park Lab for Numerical Analysis, 1985.

[12]
Guo B. Q., Recent progress on a-posteriori error analysis for the p and h^{p} finite element method, Contem. Math., 383 (2005), pp. 47–62.

[13]
Kelly D. W., Gago D. S., Zienkiewicz O. C. and Babuška I., A posteriori error analysis and adaptive processes in the finite element method: Part I–error analysis, Int. J. Numer. Meth. Eng., 19 (1983), pp. 1593–1619.

[14]
Melenk J. M., h^{p}-interpolation of nonsmooth functions and an application to h^{p}-a posteriori error estimation, SIAM J. Numer. Anal., 43 (2005), pp. 127–155.

[15]
Melenk J. M. and Wohlmuth B. I., On residual-based a posteriori error estimation in h^{p}- FEM, Adv. Comput. Math., 15 (2001), pp. 311–331.

[16]
Oden J. T., Demokowicz L., Rachowicz W. and Westermann T. A., Towards a universal h^{p}-adaptive finite element method II: a posteriori error estimation, Comput. Meth. Appl. Mech. Eng., 77 (1989), pp. 113–180.

[17]
Schmidt A. and Siebert K. G., A posteriori estimators for the h^{p} version of the finite element method in 1d, Appl. Numer. Math., 35 (2000), pp. 43–66.

[18]
Shen J., Efficient spectral-Galerkin method I: direct solvers for second and fourth order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), pp. 1489–1505.

[19]
Shen J. and Wang L. L., Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43 (2005), pp. 623–644.

[20]
Vejchodský T. and Šolín P., Discrete maximum principle for Poisson equation with mixed boundary conditions solved by h^{p}-FEM, Adv. Appl. Math. Mech., 1 (2009), pp. 201–214.

[21]
Verfürth R., A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, John Wiley & Sons Inc., 1996.

[22]
Wei Y. X. and Chen Y. P., Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech., 4 (2012), pp. 1–20.

[23]
Yang J. M. and Chen Y. P., A posteriori error analysis for a fully discrete discontinuous Galerkin approximation to a kind of reactive transport problems, J. Syst. Sci. Complex., 25 (2012), pp. 398–409.

[24]
Zhou J. W. and Yang D. P., Improved a posteriori error estimate for Galerkin spectral method in one dimension, Comput. Math. Appl., 61 (2011), pp. 334–340.

[25]
Zhou J. W. and Yang D. P., Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88 (2011), pp. 2988–3011.