Skip to main content
×
×
Home

A-Posteriori Error Estimates for Uniform p-Version Finite Element Methods in Square

  • Jianwei Zhou (a1), Danping Yang (a2) and Yujie Liu (a3)
Abstract
Abstract

In this work, the a-posteriori error indicator with an explicit formula for p-version finite element methods in square is investigated, and its reliable and efficient properties are deduced. Especially, this a-posteriori error indicator is determined by the right hand itemof themodel. We reformulate this a-posteriori error indicator with finite coefficients, which can be easily calculated during applications.

Copyright
Corresponding author
*Corresponding author. Email: jwzhou@yahoo.com (J. Zhou), dpyang@math.ecnu.edu.cn (D. Yang), liuyujie5@mail.sysu.edu.cn (Y. Liu)
References
Hide All
[1] Adams R. A. and Fournier J. J., Sobolev Spaces, Academic Press, 2003.
[2] Ainsworth M. and Oden J. T., A posteriori error estimators in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), pp. 188.
[3] Brenner S. C. and Scott L. R., The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, 2008.
[4] Babuška L. and Suri M., The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 (1987), pp. 750776.
[5] Bernardi C. and Maday Y., Polynomial approximation of some singular functions, Appl. Anal., 42 (1991), pp. 132.
[6] Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, 1987.
[7] Chen Y. P. and Tang T., Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comput., 79 (2010), pp. 147167.
[8] Chen Y. P., Xia N. S. and Yi N. Y., A Legendre Galerkin spectral method for optimal control problems, J. Syst. Sci. Complex., 24 (2011), pp. 663671.
[9] Ciarlet P. G., The Finite Element Methods for Elliptic Problems, SIAM, 2002.
[10] Düster A., Bröker H. and Rank E., The p-version of the finite element method for three-dimensional curved thin walled structures, Int. J. Numer. Meth. Eng., 52 (2001), pp. 673703.
[11] Gui W. and Babuška I., The h, p and hp versions of the finite element method in 1 dimension: Part 1. The error analysis of the p-version (No. BN-1036), Maryland Univ. College Park Lab for Numerical Analysis, 1985.
[12] Guo B. Q., Recent progress on a-posteriori error analysis for the p and hp finite element method, Contem. Math., 383 (2005), pp. 4762.
[13] Kelly D. W., Gago D. S., Zienkiewicz O. C. and Babuška I., A posteriori error analysis and adaptive processes in the finite element method: Part I–error analysis, Int. J. Numer. Meth. Eng., 19 (1983), pp. 15931619.
[14] Melenk J. M., hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation, SIAM J. Numer. Anal., 43 (2005), pp. 127155.
[15] Melenk J. M. and Wohlmuth B. I., On residual-based a posteriori error estimation in hp- FEM, Adv. Comput. Math., 15 (2001), pp. 311331.
[16] Oden J. T., Demokowicz L., Rachowicz W. and Westermann T. A., Towards a universal hp-adaptive finite element method II: a posteriori error estimation, Comput. Meth. Appl. Mech. Eng., 77 (1989), pp. 113180.
[17] Schmidt A. and Siebert K. G., A posteriori estimators for the hp version of the finite element method in 1d, Appl. Numer. Math., 35 (2000), pp. 4366.
[18] Shen J., Efficient spectral-Galerkin method I: direct solvers for second and fourth order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), pp. 14891505.
[19] Shen J. and Wang L. L., Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43 (2005), pp. 623644.
[20] Vejchodský T. and Šolín P., Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM, Adv. Appl. Math. Mech., 1 (2009), pp. 201214.
[21] Verfürth R., A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, John Wiley & Sons Inc., 1996.
[22] Wei Y. X. and Chen Y. P., Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech., 4 (2012), pp. 120.
[23] Yang J. M. and Chen Y. P., A posteriori error analysis for a fully discrete discontinuous Galerkin approximation to a kind of reactive transport problems, J. Syst. Sci. Complex., 25 (2012), pp. 398409.
[24] Zhou J. W. and Yang D. P., Improved a posteriori error estimate for Galerkin spectral method in one dimension, Comput. Math. Appl., 61 (2011), pp. 334340.
[25] Zhou J. W. and Yang D. P., Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88 (2011), pp. 29883011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 202 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2017 - 22nd January 2018. This data will be updated every 24 hours.