Skip to main content
    • Aa
    • Aa

A-Posteriori Error Estimates for Uniform p-Version Finite Element Methods in Square

  • Jianwei Zhou (a1), Danping Yang (a2) and Yujie Liu (a3)

In this work, the a-posteriori error indicator with an explicit formula for p-version finite element methods in square is investigated, and its reliable and efficient properties are deduced. Especially, this a-posteriori error indicator is determined by the right hand itemof themodel. We reformulate this a-posteriori error indicator with finite coefficients, which can be easily calculated during applications.

Corresponding author
*Corresponding author. Email: (J. Zhou), (D. Yang), (Y. Liu)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] M. Ainsworth and J. T. Oden , A posteriori error estimators in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), pp. 188.

[3] S. C. Brenner and L. R. Scott , The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, 2008.

[4] L. Babuška and M. Suri , The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 (1987), pp. 750776.

[5] C. Bernardi and Y. Maday , Polynomial approximation of some singular functions, Appl. Anal., 42 (1991), pp. 132.

[7] Y. P. Chen and T. Tang , Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comput., 79 (2010), pp. 147167.

[8] Y. P. Chen , N. S. Xia and N. Y. Yi , A Legendre Galerkin spectral method for optimal control problems, J. Syst. Sci. Complex., 24 (2011), pp. 663671.

[9] P. G. Ciarlet , The Finite Element Methods for Elliptic Problems, SIAM, 2002.

[10] A. Düster , H. Bröker and E. Rank , The p-version of the finite element method for three-dimensional curved thin walled structures, Int. J. Numer. Meth. Eng., 52 (2001), pp. 673703.

[12] B. Q. Guo , Recent progress on a-posteriori error analysis for the p and hp finite element method, Contem. Math., 383 (2005), pp. 4762.

[13] D. W. Kelly , D. S. Gago , O. C. Zienkiewicz and I. Babuška , A posteriori error analysis and adaptive processes in the finite element method: Part I–error analysis, Int. J. Numer. Meth. Eng., 19 (1983), pp. 15931619.

[14] J. M. Melenk , hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation, SIAM J. Numer. Anal., 43 (2005), pp. 127155.

[15] J. M. Melenk and B. I. Wohlmuth , On residual-based a posteriori error estimation in hp- FEM, Adv. Comput. Math., 15 (2001), pp. 311331.

[16] J. T. Oden , L. Demokowicz , W. Rachowicz and T. A. Westermann , Towards a universal hp-adaptive finite element method II: a posteriori error estimation, Comput. Meth. Appl. Mech. Eng., 77 (1989), pp. 113180.

[17] A. Schmidt and K. G. Siebert , A posteriori estimators for the hp version of the finite element method in 1d, Appl. Numer. Math., 35 (2000), pp. 4366.

[18] J. Shen , Efficient spectral-Galerkin method I: direct solvers for second and fourth order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), pp. 14891505.

[19] J. Shen and L. L. Wang , Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43 (2005), pp. 623644.

[22] Y. X. Wei and Y. P. Chen , Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech., 4 (2012), pp. 120.

[23] J. M. Yang and Y. P. Chen , A posteriori error analysis for a fully discrete discontinuous Galerkin approximation to a kind of reactive transport problems, J. Syst. Sci. Complex., 25 (2012), pp. 398409.

[24] J. W. Zhou and D. P. Yang , Improved a posteriori error estimate for Galerkin spectral method in one dimension, Comput. Math. Appl., 61 (2011), pp. 334340.

[25] J. W. Zhou and D. P. Yang , Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88 (2011), pp. 29883011.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 108 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2017 - 19th August 2017. This data will be updated every 24 hours.