[1]
Adams, R. A., Sobolev Spaces, Academic, New York, 1975.

[2]
Ackerer, P., Younes, A. and Mose, R., Modeling variable density flow and solute transport in porous medium: I. Numerical model and verification, Transport Porous Media, 35(3) (1999), pp. 345–373.

[3]
Arnold, D. N., An interior penalty finite element method with discontinuous element, SIAM J. Numer. Anal., 19(4) (1982), pp. 742–760.

[4]
Bell, J. B., Dawson, C. N. and Shubin, G. R., An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions, J. Comput. Phys., 74 (1988), pp. 1–24.

[5]
Bevilacqua, L., Feijoo, R. and Rojas M., L. F., A variational principle for the Laplace's operator with application in the torsion of composite rods, Int. J. Solids Strucrures, 10 (1974), pp. 1091–1102.

[6]
Bues, M. A. and Oltean, C., Numerical simulations for saltwater intrusion by the mixed hybrid finite element method and discontinuous finite element method, Transport Porous Media, 40(2) (2000), pp. 171–200.

[7]
Ciarlet, P. G., The Finite Element Methods for Elliptic Problems, North-Holland, New York, 1978.

[8]
Cooper, H. H. Jr., A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer, Sea water in coastal aquifer, Geological survey water-supply paper 1613-C, US Geological Survey, 1964, pp. 1–12.

[9]
Cui, M. R., Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem, J. Comput. Appl. Math., 214 (2008), pp. 617–636.

[10]
Fraeijs De Veubeke, B., Displacement and equilibrium models in the finite element method, In Zienkiewicz, O. C. and Holister, G., editors, Stress Analysis, JohnWiley and Sons, New York, 1965.

[11]
Frind, E. O., Simulation of long-term transient density-dependent transport in groundwater, Adv. Water Resour., 5(2) (1982), pp. 73–88.

[12]
Huyakorn, P. S. and Pinder, G. F., Computational Methods in Subsurface Flow, Academic Press, 1983.

[13]
Johnson, C., Streamline Diffusion Methods for Problems in Fluid Mechanics, in: Finite Element in Fluids VI, Wiley, New York, 1986.

[14]
Kohout, R. A., The flow of fresh water and salt water in the Biscayne aquifer of the Miami area, Florida, Sea water in coastal aquifer, Geological survey water supply paper 1613-C, US Geological Survey, 1964, pp. 12–32.

[15]
Lian, X. M. and Rui, H. X., A discontinuous Galerkin method combined with mixed finite element for seawater intrusion problem, J. Syst. Sci. Complex, 23 (2010), pp. 830–845.

[16]
Li, X. G., Zhu, J., Zhang, R. P. and Cao, S., A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation, J. Comput. Phys., 275 (2014), pp. 363–376.

[17]
Li, Z., Yu, X., Zhu, J. and Jia, Z., A Runge-Kutta discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions, Commun. Comput. Phys., 15 (2014), pp. 1184–1206.

[18]
Long, X. H. and Li, Y. X., Multistep characteristic finite element method for seawater intrusion problem, Numer. Math. J. China University, 30(4) (2008), pp. 325–339.

[19]
Pinder, G. F. and Cooper, H. A., Numerical technique for calculating the transient position of the saltwater front, Water Resour. Res., 6 (1970), pp. 875–882.

[20]
Reed, W. H. and Hill, T. R., *Triangular mesh methods for the neutron transport equation*, Tech. Report No. LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1973.

[21]
Rivire, B. and Wheeler, M. F., Discontinuous Galerkin methods for flow and transport problem in porous media, Commun. Numer. Methods Eng., 18 (2002), pp. 63–68.

[22]
Segol, G., Pinder, G. F. and Gray, W. G., A Galerkin finite element technique for calculating the transient position of the saltwater front, Water Resour. Res., 11(2) (1975), pp. 343–347.

[23]
Segol, G., Classic Groundwater Simulations: Proving and Improving Numerical Models, New Jersey, Prentice Hall, 1994.

[24]
Sun, S. Y., Riviera, B. and Wheeler, M. F., A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media, Recent Progress in Computational and Applied PDES, (2002), pp. 323–351.

[25]
Sun, S. Y. and Wheeler, M. F., Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. Numer. Math., 52 (2005), pp. 273–298.

[26]
Voss, C. I. and Souza, W. R., Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone, Water Resour. Res., 23(10) (1987), pp. 1851–1866.

[27]
Yang, D. P., Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comput., 69 (2000), pp. 929–963.

[28]
Yang, D. P., A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media, Numer. Meth. Part. Differ. Eq., 17 (2001), pp. 229–249.

[29]
Yuan, Y. R., Du, N., Han, Y. J., Careful numerical simulation and analysis of migration-accumulation of Tanhai Region, Appl. Math. Mech., 26(6) (2005), pp. 741–752.

[30]
Yuan, Y. R., Liang, D., Rui, H. X. and Wang, G. H., The characteristics-finite difference methods of sea water intrusion numerical simulation and optimal order l2 error estimates, Acta Math. Appl. Sinica, 19(3) (1996), pp. 395–404.

[31]
Yuan, Y. R., Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions, Sci. Bull China, 22 (1996), pp. 2027–2032.

[32]
Zhang, J. S. and Guo, H., A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem, Inter. J. Comput. Math., 89(7) (2012), pp. 932–943.

[33]
Zhang, J. S., Yang, D. P., Shen, S. Q. and Zhu, J., A new MMOCAA-MFE method for compressible miscible displacement in porous media, Appl. Numer. Math., 80 (2014), pp. 65–80.

[34]
Zhang, J. S. and Yang, D. P., A fully-discrete splitting positive definite mixed finite element scheme for compressible miscible displacement in porous media, J. Shandong University (Nature Science), 41 (2006), pp. 1–10.

[35]
Zhang, J. S. and Yang, D. P., A splitting positive definite mixed element method for second order hyperbolic equations, Numer. Meth. Part. Differ. Eq., 25(3) (2009), pp. 622–636.

[36]
Zhang, R. P., Yu, X., Zhu, J. and Loula, A. F. D., Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation, Appl. Math. Model., 38 (2014), pp. 1612–1621.

[37]
Zhu, J., Yu, X. and Loula, A. F. D., Mixed discontinuous Galerkin analysis of thermally nonlinear coupled problem, Comput. Methods Appl. Mech. Eng., 200 (2011), pp. 1479–1489.

[38]
Zhu, J., The characteristic numerical methods for KdV equation, Numer. Math. J. China University, 10 (1988), pp. 11–27.

[39]
Zhu, J., The characteristic numerical methods for RLW equation, Acta Math. Appl. Sinica, 13 (1990), pp. 64–73.