Home

# A Combined Discontinuous Galerkin Method for Saltwater Intrusion Problem with Splitting Mixed Procedure

## Abstract

In this paper, a new combined method is presented to simulate saltwater intrusion problem. A splitting positive definite mixed element method is used to solve the water head equation, and a symmetric discontinuous Galerkin (DG) finite element method is used to solve the concentration equation. The introduction of these two numerical methods not only makes the coefficient matrixes symmetric positive definite, but also does well with the discontinuous problem. The convergence of this method is considered and the optimal L 2-norm error estimate is also derived.

## Corresponding author

*Corresponding author. Email: jszhang@upc.edu.cn (J. Zhang), jiang@lncc.br (J. Zhu), dpyang@math.ecnu.edu.cn (D. Yang)

## References

Hide All
[2] Ackerer, P., Younes, A. and Mose, R., Modeling variable density flow and solute transport in porous medium: I. Numerical model and verification, Transport Porous Media, 35(3) (1999), pp. 345373.
[3] Arnold, D. N., An interior penalty finite element method with discontinuous element, SIAM J. Numer. Anal., 19(4) (1982), pp. 742760.
[4] Bell, J. B., Dawson, C. N. and Shubin, G. R., An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions, J. Comput. Phys., 74 (1988), pp. 124.
[5] Bevilacqua, L., Feijoo, R. and Rojas M., L. F., A variational principle for the Laplace's operator with application in the torsion of composite rods, Int. J. Solids Strucrures, 10 (1974), pp. 10911102.
[6] Bues, M. A. and Oltean, C., Numerical simulations for saltwater intrusion by the mixed hybrid finite element method and discontinuous finite element method, Transport Porous Media, 40(2) (2000), pp. 171200.
[7] Ciarlet, P. G., The Finite Element Methods for Elliptic Problems, North-Holland, New York, 1978.
[8] Cooper, H. H. Jr., A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer, Sea water in coastal aquifer, Geological survey water-supply paper 1613-C, US Geological Survey, 1964, pp. 112.
[9] Cui, M. R., Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem, J. Comput. Appl. Math., 214 (2008), pp. 617636.
[10] Fraeijs De Veubeke, B., Displacement and equilibrium models in the finite element method, In Zienkiewicz, O. C. and Holister, G., editors, Stress Analysis, JohnWiley and Sons, New York, 1965.
[11] Frind, E. O., Simulation of long-term transient density-dependent transport in groundwater, Adv. Water Resour., 5(2) (1982), pp. 7388.
[12] Huyakorn, P. S. and Pinder, G. F., Computational Methods in Subsurface Flow, Academic Press, 1983.
[13] Johnson, C., Streamline Diffusion Methods for Problems in Fluid Mechanics, in: Finite Element in Fluids VI, Wiley, New York, 1986.
[14] Kohout, R. A., The flow of fresh water and salt water in the Biscayne aquifer of the Miami area, Florida, Sea water in coastal aquifer, Geological survey water supply paper 1613-C, US Geological Survey, 1964, pp. 1232.
[15] Lian, X. M. and Rui, H. X., A discontinuous Galerkin method combined with mixed finite element for seawater intrusion problem, J. Syst. Sci. Complex, 23 (2010), pp. 830845.
[16] Li, X. G., Zhu, J., Zhang, R. P. and Cao, S., A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation, J. Comput. Phys., 275 (2014), pp. 363376.
[17] Li, Z., Yu, X., Zhu, J. and Jia, Z., A Runge-Kutta discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions, Commun. Comput. Phys., 15 (2014), pp. 11841206.
[18] Long, X. H. and Li, Y. X., Multistep characteristic finite element method for seawater intrusion problem, Numer. Math. J. China University, 30(4) (2008), pp. 325339.
[19] Pinder, G. F. and Cooper, H. A., Numerical technique for calculating the transient position of the saltwater front, Water Resour. Res., 6 (1970), pp. 875882.
[20] Reed, W. H. and Hill, T. R., Triangular mesh methods for the neutron transport equation, Tech. Report No. LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1973.
[21] Rivire, B. and Wheeler, M. F., Discontinuous Galerkin methods for flow and transport problem in porous media, Commun. Numer. Methods Eng., 18 (2002), pp. 6368.
[22] Segol, G., Pinder, G. F. and Gray, W. G., A Galerkin finite element technique for calculating the transient position of the saltwater front, Water Resour. Res., 11(2) (1975), pp. 343347.
[23] Segol, G., Classic Groundwater Simulations: Proving and Improving Numerical Models, New Jersey, Prentice Hall, 1994.
[24] Sun, S. Y., Riviera, B. and Wheeler, M. F., A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media, Recent Progress in Computational and Applied PDES, (2002), pp. 323351.
[25] Sun, S. Y. and Wheeler, M. F., Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. Numer. Math., 52 (2005), pp. 273298.
[26] Voss, C. I. and Souza, W. R., Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone, Water Resour. Res., 23(10) (1987), pp. 18511866.
[27] Yang, D. P., Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comput., 69 (2000), pp. 929963.
[28] Yang, D. P., A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media, Numer. Meth. Part. Differ. Eq., 17 (2001), pp. 229249.
[29] Yuan, Y. R., Du, N., Han, Y. J., Careful numerical simulation and analysis of migration-accumulation of Tanhai Region, Appl. Math. Mech., 26(6) (2005), pp. 741752.
[30] Yuan, Y. R., Liang, D., Rui, H. X. and Wang, G. H., The characteristics-finite difference methods of sea water intrusion numerical simulation and optimal order l2 error estimates, Acta Math. Appl. Sinica, 19(3) (1996), pp. 395404.
[31] Yuan, Y. R., Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions, Sci. Bull China, 22 (1996), pp. 20272032.
[32] Zhang, J. S. and Guo, H., A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem, Inter. J. Comput. Math., 89(7) (2012), pp. 932943.
[33] Zhang, J. S., Yang, D. P., Shen, S. Q. and Zhu, J., A new MMOCAA-MFE method for compressible miscible displacement in porous media, Appl. Numer. Math., 80 (2014), pp. 6580.
[34] Zhang, J. S. and Yang, D. P., A fully-discrete splitting positive definite mixed finite element scheme for compressible miscible displacement in porous media, J. Shandong University (Nature Science), 41 (2006), pp. 110.
[35] Zhang, J. S. and Yang, D. P., A splitting positive definite mixed element method for second order hyperbolic equations, Numer. Meth. Part. Differ. Eq., 25(3) (2009), pp. 622636.
[36] Zhang, R. P., Yu, X., Zhu, J. and Loula, A. F. D., Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation, Appl. Math. Model., 38 (2014), pp. 16121621.
[37] Zhu, J., Yu, X. and Loula, A. F. D., Mixed discontinuous Galerkin analysis of thermally nonlinear coupled problem, Comput. Methods Appl. Mech. Eng., 200 (2011), pp. 14791489.
[38] Zhu, J., The characteristic numerical methods for KdV equation, Numer. Math. J. China University, 10 (1988), pp. 1127.
[39] Zhu, J., The characteristic numerical methods for RLW equation, Acta Math. Appl. Sinica, 13 (1990), pp. 6473.

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *