[1]
AbgrallR., How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125 (1996), pp. 150–160.

[2]
ShyueK.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142(1) (1998), pp. 208–242.

[3]
SaurelR. and AbgrallR., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150(2) (1999), pp. 425–467.

[4]
AllaireG., ClercS. and KokhS., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181(2) (2002), pp. 577–616.

[5]
SaurelR., GavrilyukS. and RenaudF., A multiphase model with internal degrees of freedom: Application to shock-bubble interaction, J. Fluid Mech., 495 (2003), pp. 283–321.

[6]
MarquinaA. and MuletP., A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185(1) (2003), pp. 120–138.

[7]
ChangC.-H. and LiouM.-S., Robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM^{+}-up scheme, J. Comput. Phys., 225(1) (2007), pp. 840–873.

[8]
JohnsenT. and ColoniusE., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219(4) (2006), pp. 715–732.

[9]
KokhS. and LagoutièreF., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229(8) (2010), pp. 2773–2809.

[10]
ShuklaR. K., PantanoC. and FreundJ. B., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229(19) (2010), pp. 7411–7439.

[11]
SoK. K., HuX. Y. and AdamsN. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231(11) (2012), pp. 4304–4323.

[12]
TiwariA., FreundJ. B. and PantanoC., A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252 (2013), pp. 290–309.

[13]
ShuklaR. K., Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276 (2014), pp. 508–540.

[14]
DeligantM., SpecklinM. and KhelladiS., A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver, Comput. Fluids, 114 (2015), pp. 265–273.

[15]
FedkiwR. P., AslamT., MerrimanB. and OsherS., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152(2) (1999), pp. 457–492.

[16]
LiuT. G., KhooB. C. and YeoK. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190(2) (2003), pp. 651–681.

[17]
WangC. W., LiuT. G. and KhooB. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28(1) (2006), pp. 278–302.

[18]
SambasivanS. K. and UdaykumarH. S., Ghost fluid method for strong shock interactions part 1: Fluid-fluid interfaces, AIAA J., 47(12) (2009), pp. 2907–2922.

[19]
TerashimaH. and TryggvasonG., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228(11) (2009), pp. 4012–4037.

[20]
HuX. Y., KhooB. C., AdamsN. A. and HuangF. L., A conservative interface method for compressible flows, J. Comput. Phys., 219(2) (2006), pp. 553–578.

[21]
ChangC.-H., DengX. and TheofanousT. G., Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242 (2013), pp. 946–990.

[22]
NourgalievR. R., LiouM.-S. and TheofanousT. G., Numerical prediction of interfacial instabilities: Sharp interface method (SIM), J. Comput. Phys., 227(8) (2008), pp. 3940–3970.

[23]
KimH. and LiouM.-S., Adaptive Cartesian sharp interface method for three-dimensional multiphase flows, AIAA Paper, (2009), pp. 2009–4153.

[24]
BoW. and GroveJ. W., A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput. Fluids, 90 (2014), pp. 113–122.

[25]
LinJ., ShenY., DingH., LiuN. and LuX., *Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method*, preparing.

[26]
RoeP. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), pp. 357–372.

[27]
HartmannD., MeinkeM. and SchröderW., The constrained reinitialization equation for level set methods, J. Comput. Phys., 229(5) (2010), pp. 1514–1535.

[28]
OsherS. and FedkiwR., Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.

[29]
HartenA., LaxP. D. and Van LeerB., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25(1) (1983), pp. 35–61.

[30]
ShuC.-W. and OsherS., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77(2) (1988), pp. 439–471.

[31]
HolmesR. L., GroveJ.W. and SharpD. H., Numerical investigation of Richtmyer–Meshkov instability using front tracking, J. Fluid Mech., 301 (1995), pp. 51–64.

[32]
UllahM. A., MaoD.-K and GaoW.-B., Numerical simulations of Richtmyer–Meshkov instabilities using conservative front-tracking method, Appl. Math. Mech., 32(1) (2011), pp. 119–132.

[33]
BatesK. R., NikiforakisN. and HolderD., Richtmyer–Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF_{6}
, Phys. Fluids, 19 (2007), 036101.

[34]
JohnsenT. and ColoniusE., Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124(4) (2008), pp. 2011–2020.

[35]
BallG. J., HowellB. P., LeightonT. G. and SchofieldM. J., Shock-induced collapse of a cylindrical air cavity in water: A free-Lagrange simulation, Shock Waves, 10(4) (2000), pp. 265–276.

[36]
HuX. Y. and KhooB. C., An interface interaction method for compressible multifluids, J. Comput. Phys., 198(1) (2004), pp. 35–64.

[37]
NourgalievR. R. and DinhT. N., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213(2) (2006), pp. 500–529.

[38]
HawkerN. A. and VentikosY., Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study, J. Fluid Mech., 701 (2012), pp. 59–97.