Skip to main content
    • Aa
    • Aa

A Comparison Study of Numerical Methods for Compressible Two-Phase Flows

  • Jianyu Lin (a1), Hang Ding (a1), Xiyun Lu (a1) and Peng Wang (a2)

In this article a comparison study of the numerical methods for compressible two-phase flows is presented. Although many numerical methods have been developed in recent years to deal with the jump conditions at the fluid-fluid interfaces in compressible multiphase flows, there is a lack of a detailed comparison of these methods. With this regard, the transport five equation model, the modified ghost fluid method and the cut-cell method are investigated here as the typical methods in this field. A variety of numerical experiments are conducted to examine their performance in simulating inviscid compressible two-phase flows. Numerical experiments include Richtmyer-Meshkov instability, interaction between a shock and a rectangle SF 6 bubble, Rayleigh collapse of a cylindrical gas bubble in water and shock-induced bubble collapse, involving fluids with small or large density difference. Based on the numerical results, the performance of the method is assessed by the convergence order of the method with respect to interface position, mass conservation, interface resolution and computational efficiency.

Corresponding author
*Corresponding author. Email: (J. Y. Lin), (H. Ding), (X. Y. Lu), (P. Wang)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] R. Abgrall , How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125 (1996), pp. 150160.

[2] K.-M. Shyue , An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142(1) (1998), pp. 208242.

[3] R. Saurel and R. Abgrall , A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150(2) (1999), pp. 425467.

[4] G. Allaire , S. Clerc and S. Kokh , A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181(2) (2002), pp. 577616.

[5] R. Saurel , S. Gavrilyuk and F. Renaud , A multiphase model with internal degrees of freedom: Application to shock-bubble interaction, J. Fluid Mech., 495 (2003), pp. 283321.

[6] A. Marquina and P. Mulet , A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185(1) (2003), pp. 120138.

[7] C.-H. Chang and M.-S. Liou , Robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme, J. Comput. Phys., 225(1) (2007), pp. 840873.

[8] T. Johnsen and E. Colonius , Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219(4) (2006), pp. 715732.

[9] S. Kokh and F. Lagoutière , An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229(8) (2010), pp. 27732809.

[10] R. K. Shukla , C. Pantano and J. B. Freund , An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229(19) (2010), pp. 74117439.

[11] K. K. So , X. Y. Hu and N. A. Adams , Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231(11) (2012), pp. 43044323.

[12] A. Tiwari , J. B. Freund and C. Pantano , A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252 (2013), pp. 290309.

[13] R. K. Shukla , Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276 (2014), pp. 508540.

[14] M. Deligant , M. Specklin and S. Khelladi , A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver, Comput. Fluids, 114 (2015), pp. 265273.

[15] R. P. Fedkiw , T. Aslam , B. Merriman and S. Osher , A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152(2) (1999), pp. 457492.

[16] T. G. Liu , B. C. Khoo and K. S. Yeo , Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190(2) (2003), pp. 651681.

[17] C. W. Wang , T. G. Liu and B. C. Khoo , A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28(1) (2006), pp. 278302.

[18] S. K. Sambasivan and H. S. Udaykumar , Ghost fluid method for strong shock interactions part 1: Fluid-fluid interfaces, AIAA J., 47(12) (2009), pp. 29072922.

[19] H. Terashima and G. Tryggvason , A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228(11) (2009), pp. 40124037.

[20] X. Y. Hu , B. C. Khoo , N. A. Adams and F. L. Huang , A conservative interface method for compressible flows, J. Comput. Phys., 219(2) (2006), pp. 553578.

[21] C.-H. Chang , X. Deng and T. G. Theofanous , Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242 (2013), pp. 946990.

[22] R. R. Nourgaliev , M.-S. Liou and T. G. Theofanous , Numerical prediction of interfacial instabilities: Sharp interface method (SIM), J. Comput. Phys., 227(8) (2008), pp. 39403970.

[24] W. Bo and J. W. Grove , A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput. Fluids, 90 (2014), pp. 113122.

[26] P. L. Roe , Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), pp. 357372.

[27] D. Hartmann , M. Meinke and W. Schröder , The constrained reinitialization equation for level set methods, J. Comput. Phys., 229(5) (2010), pp. 15141535.

[28] S. Osher and R. Fedkiw , Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.

[29] A. Harten , P. D. Lax and B. Van Leer , On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25(1) (1983), pp. 3561.

[30] C.-W. Shu and S. Osher , Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77(2) (1988), pp. 439471.

[31] R. L. Holmes , J.W. Grove and D. H. Sharp , Numerical investigation of Richtmyer–Meshkov instability using front tracking, J. Fluid Mech., 301 (1995), pp. 5164.

[32] M. A. Ullah , D.-K Mao and W.-B. Gao , Numerical simulations of Richtmyer–Meshkov instabilities using conservative front-tracking method, Appl. Math. Mech., 32(1) (2011), pp. 119132.

[33] K. R. Bates , N. Nikiforakis and D. Holder , Richtmyer–Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6 , Phys. Fluids, 19 (2007), 036101.

[34] T. Johnsen and E. Colonius , Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124(4) (2008), pp. 20112020.

[35] G. J. Ball , B. P. Howell , T. G. Leighton and M. J. Schofield , Shock-induced collapse of a cylindrical air cavity in water: A free-Lagrange simulation, Shock Waves, 10(4) (2000), pp. 265276.

[36] X. Y. Hu and B. C. Khoo , An interface interaction method for compressible multifluids, J. Comput. Phys., 198(1) (2004), pp. 3564.

[37] R. R. Nourgaliev and T. N. Dinh , Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213(2) (2006), pp. 500529.

[38] N. A. Hawker and Y. Ventikos , Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study, J. Fluid Mech., 701 (2012), pp. 5997.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 58 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 27th July 2017. This data will be updated every 24 hours.