This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
R. Abgrall , How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125 (1996), pp. 150–160.

[2]
K.-M. Shyue , An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142(1) (1998), pp. 208–242.

[3]
R. Saurel and R. Abgrall , A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150(2) (1999), pp. 425–467.

[4]
G. Allaire , S. Clerc and S. Kokh , A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181(2) (2002), pp. 577–616.

[5]
R. Saurel , S. Gavrilyuk and F. Renaud , A multiphase model with internal degrees of freedom: Application to shock-bubble interaction, J. Fluid Mech., 495 (2003), pp. 283–321.

[6]
A. Marquina and P. Mulet , A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185(1) (2003), pp. 120–138.

[7]
C.-H. Chang and M.-S. Liou , Robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme, J. Comput. Phys., 225(1) (2007), pp. 840–873.

[8]
T. Johnsen and E. Colonius , Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219(4) (2006), pp. 715–732.

[9]
S. Kokh and F. Lagoutière , An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229(8) (2010), pp. 2773–2809.

[10]
R. K. Shukla , C. Pantano and J. B. Freund , An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229(19) (2010), pp. 7411–7439.

[11]
K. K. So , X. Y. Hu and N. A. Adams , Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231(11) (2012), pp. 4304–4323.

[12]
A. Tiwari , J. B. Freund and C. Pantano , A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252 (2013), pp. 290–309.

[13]
R. K. Shukla , Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276 (2014), pp. 508–540.

[14]
M. Deligant , M. Specklin and S. Khelladi , A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver, Comput. Fluids, 114 (2015), pp. 265–273.

[15]
R. P. Fedkiw , T. Aslam , B. Merriman and S. Osher , A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152(2) (1999), pp. 457–492.

[16]
T. G. Liu , B. C. Khoo and K. S. Yeo , Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190(2) (2003), pp. 651–681.

[17]
C. W. Wang , T. G. Liu and B. C. Khoo , A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28(1) (2006), pp. 278–302.

[18]
S. K. Sambasivan and H. S. Udaykumar , Ghost fluid method for strong shock interactions part 1: Fluid-fluid interfaces, AIAA J., 47(12) (2009), pp. 2907–2922.

[19]
H. Terashima and G. Tryggvason , A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228(11) (2009), pp. 4012–4037.

[20]
X. Y. Hu , B. C. Khoo , N. A. Adams and F. L. Huang , A conservative interface method for compressible flows, J. Comput. Phys., 219(2) (2006), pp. 553–578.

[21]
C.-H. Chang , X. Deng and T. G. Theofanous , Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242 (2013), pp. 946–990.

[22]
R. R. Nourgaliev , M.-S. Liou and T. G. Theofanous , Numerical prediction of interfacial instabilities: Sharp interface method (SIM), J. Comput. Phys., 227(8) (2008), pp. 3940–3970.

[24]
W. Bo and J. W. Grove , A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput. Fluids, 90 (2014), pp. 113–122.

[26]
P. L. Roe , Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), pp. 357–372.

[27]
D. Hartmann , M. Meinke and W. Schröder , The constrained reinitialization equation for level set methods, J. Comput. Phys., 229(5) (2010), pp. 1514–1535.

[28]
S. Osher and R. Fedkiw , Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.

[29]
A. Harten , P. D. Lax and B. Van Leer , On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25(1) (1983), pp. 35–61.

[30]
C.-W. Shu and S. Osher , Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77(2) (1988), pp. 439–471.

[31]
R. L. Holmes , J.W. Grove and D. H. Sharp , Numerical investigation of Richtmyer–Meshkov instability using front tracking, J. Fluid Mech., 301 (1995), pp. 51–64.

[32]
M. A. Ullah , D.-K Mao and W.-B. Gao , Numerical simulations of Richtmyer–Meshkov instabilities using conservative front-tracking method, Appl. Math. Mech., 32(1) (2011), pp. 119–132.

[33]
K. R. Bates , N. Nikiforakis and D. Holder , Richtmyer–Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6
, Phys. Fluids, 19 (2007), 036101.

[34]
T. Johnsen and E. Colonius , Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124(4) (2008), pp. 2011–2020.

[35]
G. J. Ball , B. P. Howell , T. G. Leighton and M. J. Schofield , Shock-induced collapse of a cylindrical air cavity in water: A free-Lagrange simulation, Shock Waves, 10(4) (2000), pp. 265–276.

[36]
X. Y. Hu and B. C. Khoo , An interface interaction method for compressible multifluids, J. Comput. Phys., 198(1) (2004), pp. 35–64.

[37]
R. R. Nourgaliev and T. N. Dinh , Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213(2) (2006), pp. 500–529.

[38]
N. A. Hawker and Y. Ventikos , Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study, J. Fluid Mech., 701 (2012), pp. 59–97.