This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
Z. Z. Bai , Y. H. Gao and L. Z. Lu , Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory, SIAM J. Sci. Comput., 30 (2008), pp. 804–818.

[3]
D. A. Bini , B. Iannazzo and F. Poloni , A fast Newton's method for a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 276–290.

[5]
C. H. Guo , A new class of nonsymmetric algebraic Riccati equations, Linear Algebra Appl., 426 (2007), pp. 636–649.

[6]
C. H. Guo and A. J. Laub , On a Newton-like method for solving algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 694–698.

[7]
C. H. Guo and W. W. Lin , Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory, Linear Algebra Appl., 432 (2010), pp. 283–291.

[8]
B. Gu , V. S. Sheng , K. Y. Tay , W. Romano and S. Li , Incremental support vector learning for ordinal regression, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), pp. 1403–1416.

[9]
N. Huang and C. F. Ma , Some predictor-corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory, Numer. Linear Algebra Appl., 21 (2014), pp. 761–780.

[10]
J. Juang , Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), pp. 89–100.

[11]
J. Juang and I. D. Chen , Iterative solution for a certain class of algebraic matrix Riccati equations arising in transport theory, Tansport Theory Statist. Phys., 22 (1993), pp. 65–80.

[12]
J. Juang and W. W. Lin , Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 228–243.

[13]
M. A. Krasnoselskii , G. M. Vainikko , P. P. Zabreiko , YA. B. Rutitskii and V. YA. Stetsenko , Approximate Solution of Operator Equations, Wolters-Noordhoff Publishing, Groningen, 1972.

[15]
T. X. Li , E. K. W. Chu , W. W. Lin and P. C. Y. Weng , Solving large-scale continuous-time algebraic Riccati equations by doubling, J. Comput. Appl. Math., 237 (2013), pp. 373–383.

[16]
T. X. Li , E. K. W. Chu , Y. C. Kuo and W. W. Lin , Solving large-scale nonsymmetric algebraic Riccati equations by doubling, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1129–1147.

[17]
C. Liu and J. Xue , Complex nonsymmetric algebraic Riccati equations arising in Markov modulated fluid flows, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 569–596.

[18]
L. Z. Lu , Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 679–685.

[19]
V. Mehrmann and H. Xu , Explicit solutions for a Riccati equation from transport theory, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1339–1357.

[20]
R. Varga , Matrix Iterative Analysis, 2nd Edn. Springer-Verlag: Berlin Heidelberg, 2000.

[23]
B. Yu , D. H. Li and N. Dong , Low memory and low complexity iterative schemes for a nonsymmetric algebraic Riccati equation arising from transport theory, J. Comput. Appl. Math., 250 (2013), pp. 175–189.