Skip to main content
×
Home

Convergence Rates of a Class of Predictor-Corrector Iterations for the Nonsymmetric Algebraic Riccati Equation Arising in Transport Theory

  • Ning Dong (a1) (a2), Jicheng Jin (a1) and Bo Yu (a1)
Abstract
Abstract

In this paper, we analyse the convergence rates of several different predictor-corrector iterations for computing the minimal positive solution of the nonsymmetric algebraic Riccati equation arising in transport theory. We have shown theoretically that the new predictor-corrector iteration given in [Numer. Linear Algebra Appl., 21 (2014), pp. 761–780] will converge no faster than the simple predictor-corrector iteration and the nonlinear block Jacobi predictor-corrector iteration. Moreover the last two have the same asymptotic convergence rate with the nonlinear block Gauss-Seidel iteration given in [SIAM J. Sci. Comput., 30 (2008), pp. 804–818]. Preliminary numerical experiments have been reported for the validation of the developed comparison theory.

Copyright
Corresponding author
*Corresponding author. Email: dongning_158@sina.com (N. Dong), jcjin2008@sina.com (J. C. Jin), boyu_hut@126.com (B. Yu)
References
Hide All
[1] Bai Z. Z., Gao Y. H. and Lu L. Z., Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory, SIAM J. Sci. Comput., 30 (2008), pp. 804818.
[2] Bao L., Lin Y. Q. and Wei Y. M., A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory, Appl. Math. Comput., 181 (2006), pp. 14991504.
[3] Bini D. A., Iannazzo B. and Poloni F., A fast Newton's method for a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 276290.
[4] Gao Y. H., Theories and Algorithms for Several Quadratic Matrix Equations, Ph.D. thesis, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, 2007.
[5] Guo C. H., A new class of nonsymmetric algebraic Riccati equations, Linear Algebra Appl., 426 (2007), pp. 636649.
[6] Guo C. H. and Laub A. J., On a Newton-like method for solving algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 694698.
[7] Guo C. H. and Lin W. W., Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory, Linear Algebra Appl., 432 (2010), pp. 283291.
[8] Gu B., Sheng V. S., Tay K. Y., Romano W. and Li S., Incremental support vector learning for ordinal regression, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), pp. 14031416.
[9] Huang N. and Ma C. F., Some predictor-corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory, Numer. Linear Algebra Appl., 21 (2014), pp. 761–780.
[10] Juang J., Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), pp. 89100.
[11] Juang J. and Chen I. D., Iterative solution for a certain class of algebraic matrix Riccati equations arising in transport theory, Tansport Theory Statist. Phys., 22 (1993), pp. 6580.
[12] Juang J. and Lin W. W., Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 228243.
[13] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii YA. B. and Stetsenko V. YA., Approximate Solution of Operator Equations, Wolters-Noordhoff Publishing, Groningen, 1972.
[14] Li J., Li X., Yang B. and Sun X., Segmentation-based image copy-move forgery detection scheme, IEEE Trans. Inf. Forensics Security, 10 (2015), pp. 507518.
[15] Li T. X., Chu E. K. W., Lin W. W. and Weng P. C. Y., Solving large-scale continuous-time algebraic Riccati equations by doubling, J. Comput. Appl. Math., 237 (2013), pp. 373383.
[16] Li T. X., Chu E. K. W., Kuo Y. C. and Lin W. W., Solving large-scale nonsymmetric algebraic Riccati equations by doubling, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 11291147.
[17] Liu C. and Xue J., Complex nonsymmetric algebraic Riccati equations arising in Markov modulated fluid flows, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 569596.
[18] Lu L. Z., Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 679685.
[19] Mehrmann V. and Xu H., Explicit solutions for a Riccati equation from transport theory, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 13391357.
[20] Varga R., Matrix Iterative Analysis, 2nd Edn. Springer-Verlag: Berlin Heidelberg, 2000.
[21] Wen F. H., He Z. F., Dai Z. F. and Yang X. G., Characteristics of investors risk preference forstock markets, Econ. Comput. Econ. Cyb., 3(48) (2014), pp. 235254.
[22] Weng P. C. Y., Fan H. Y. and Chu E. K. W., Low-rank approximation to the solution of a nonsymmetric algebraic Riccati equation from transport theory, Appl.Math. Comput., 219 (2012), pp. 729740.
[23] Yu B., Li D. H. and Dong N., Low memory and low complexity iterative schemes for a nonsymmetric algebraic Riccati equation arising from transport theory, J. Comput. Appl. Math., 250 (2013), pp. 175189.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 187 *
Loading metrics...

* Views captured on Cambridge Core between 18th January 2017 - 20th November 2017. This data will be updated every 24 hours.