[1]
Bai Z. Z., Gao Y. H. and Lu L. Z., Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory, SIAM J. Sci. Comput., 30 (2008), pp. 804–818.

[2]
Bao L., Lin Y. Q. and Wei Y. M., A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory, Appl. Math. Comput., 181 (2006), pp. 1499–1504.

[3]
Bini D. A., Iannazzo B. and Poloni F., A fast Newton's method for a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 276–290.

[4]
Gao Y. H., Theories and Algorithms for Several Quadratic Matrix Equations, Ph.D. thesis, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, 2007.

[5]
Guo C. H., A new class of nonsymmetric algebraic Riccati equations, Linear Algebra Appl., 426 (2007), pp. 636–649.

[6]
Guo C. H. and Laub A. J., On a Newton-like method for solving algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 694–698.

[7]
Guo C. H. and Lin W. W., Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory, Linear Algebra Appl., 432 (2010), pp. 283–291.

[8]
Gu B., Sheng V. S., Tay K. Y., Romano W. and Li S., Incremental support vector learning for ordinal regression, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), pp. 1403–1416.

[9]
Huang N. and Ma C. F., Some predictor-corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory, Numer. Linear Algebra Appl., 21 (2014), pp. 761–780.

[10]
Juang J., Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), pp. 89–100.

[11]
Juang J. and Chen I. D., Iterative solution for a certain class of algebraic matrix Riccati equations arising in transport theory, Tansport Theory Statist. Phys., 22 (1993), pp. 65–80.

[12]
Juang J. and Lin W. W., Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 228–243.

[13]
Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii YA. B. and Stetsenko V. YA., Approximate Solution of Operator Equations, Wolters-Noordhoff Publishing, Groningen, 1972.

[14]
Li J., Li X., Yang B. and Sun X., Segmentation-based image copy-move forgery detection scheme, IEEE Trans. Inf. Forensics Security, 10 (2015), pp. 507–518.

[15]
Li T. X., Chu E. K. W., Lin W. W. and Weng P. C. Y., Solving large-scale continuous-time algebraic Riccati equations by doubling, J. Comput. Appl. Math., 237 (2013), pp. 373–383.

[16]
Li T. X., Chu E. K. W., Kuo Y. C. and Lin W. W., Solving large-scale nonsymmetric algebraic Riccati equations by doubling, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1129–1147.

[17]
Liu C. and Xue J., Complex nonsymmetric algebraic Riccati equations arising in Markov modulated fluid flows, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 569–596.

[18]
Lu L. Z., Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 679–685.

[19]
Mehrmann V. and Xu H., Explicit solutions for a Riccati equation from transport theory, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1339–1357.

[20]
Varga R., Matrix Iterative Analysis, 2nd Edn. Springer-Verlag: Berlin Heidelberg, 2000.

[21]
Wen F. H., He Z. F., Dai Z. F. and Yang X. G., Characteristics of investors risk preference forstock markets, Econ. Comput. Econ. Cyb., 3(48) (2014), pp. 235–254.

[22]
Weng P. C. Y., Fan H. Y. and Chu E. K. W., Low-rank approximation to the solution of a nonsymmetric algebraic Riccati equation from transport theory, Appl.Math. Comput., 219 (2012), pp. 729–740.

[23]
Yu B., Li D. H. and Dong N., Low memory and low complexity iterative schemes for a nonsymmetric algebraic Riccati equation arising from transport theory, J. Comput. Appl. Math., 250 (2013), pp. 175–189.