This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
D. Anderson , G. B. McFadden and A. Wheeler , Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30 (1998), pp. 139–165.

[2]
A. Baskaran , J. S. Lowengrub , C. Wang and S. M. Wise , Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 51 (2013), pp. 2851–2873.

[3]
J. W. Cahn and J. E. Hilliard , Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258–267.

[5]
J. W. Cahn , On spinodal decomposition, Acta Metallurgica, 9 (1961), pp. 795–801.

[6]
W. Chen , S. Conde , C. Wang , X. Wang and S. Wise , A linear energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 52 (2012), pp. 546–562.

[9]
S. Gu , H. Zhang and Z. Zhang , An energy-stable finite-difference scheme for the binary fluid-surfactant system, J. Comput. Phys., 270 (2014), pp. 416–431.

[10]
J. Guo , C. Wang , S. M. Wise and X. Yue , An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation, Commun. Math. Sci., 14(2) (2016), pp. 489–515.

[11]
Z. Hu , S. M. Wise , C. Wang and J. S. Lowengrub , Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), pp. 5323–5339.

[12]
J. Kou and S. Sun , An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces, J. Comput. Appl. Math., 255 (2014), pp. 593–604.

[14]
J. Kou , S. Sun and X. Wang , Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces, Comput. Methods Appl. Mech. Eng., 292 (2015), pp. 92–106.

[15]
J. Li , Z. Z. Sun and X. Zhao , A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 55(4) (2012), pp. 805–826.

[17]
D. Li , Z. Qiao and T. Tang , Characterizing the stabilization size for semi-implicit Fourier-Spetral method to phase field equations, SIAM J. Numer. Anal., 54 (2016), pp. 1653–1681.

[18]
H. Lin and Y. Duan , Surface tension measurements of propane (r–290) and isobutane (r–600a) from (253 to 333)K, J. Chem. Eng. Data, 48 (2003), pp. 1360–1363.

[19]
H. Liao and Z. Sun , Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differential Equations, 26 (2010), pp. 37–60.

[20]
D. Y. Peng and D. B. Robinson , A new two-constant equation of state, Industrial and Engineering Chemistry Fundamentals, 15(1) (1976), pp. 59–64.

[22]
Z. Qiao , Z. Sun and Z. Zhang , The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model, Numer. Methods Partial Differential Equations, 28(6) (2012), pp. 1893–1915.

[23]
Z. Qiao and S. Sun , Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state, SIAM J. Sci. Comput., 36(4) (2014), pp. B708–B728.

[24]
Z. Qiao , Z. Sun and Z. Zhang , Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput., 84 (2015), pp. 653–674.

[25]
D. B. Robinson , D. Peng and S. Y. Chung , The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol, Fluid Phase Equilibria, 24 (1985), pp. 25–41.

[26]
J. Shen , C. Wang , X. Wang and S. M. Wise , Second–order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), pp. 105–125.

[27]
J. Shen and X. Yang , Numerical approximations of Allen–Cahn and Cahn–Hilliard equations, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), pp. 1669–1691.

[28]
Z. Sun , A second–order accurate linearized difference scheme for the two–dimensional Cahn–Hilliard equation, Math. Comput., 64(212) (1995), pp. 1463–1471.

[30]
P. Vignal , L. Dalcin , D. L. Brown , N. Collier and V. M. Calo , An energy-stable convex splitting for the phase-field crystal equation, Comput. Struct., 158 (2015), pp. 355–368.

[32]
C. Wang and S. M Wise , An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49 (2011), pp. 945–969.

[33]
S. M. Wise , C. Wang and J. S. Lowengrub , An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), pp. 2269–2288.

[34]
C. Xu and T. Tang , Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), pp. 1759–1779.