Skip to main content
×
Home
    • Aa
    • Aa

A Convex-Splitting Scheme for a Diffuse Interface Model with Peng-Robinson Equation of State

  • Qiujin Peng (a1)
Abstract
Abstract

We present a convex-splitting scheme for the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson equation of state for pure substance. The semi-implicit scheme is proven to be uniquely solvable, mass conservative, unconditionally energy stable and L convergent with the order of . The numerical results verify the effectiveness of the proposed algorithm and also show good agreement of the numerical solution with laboratory experimental results.

Copyright
Corresponding author
*Corresponding author. Email: pengqiujin@ruc.edu.cn (Q. J. Peng)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] D. Anderson , G. B. McFadden and A. Wheeler , Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30 (1998), pp. 139165.

[2] A. Baskaran , J. S. Lowengrub , C. Wang and S. M. Wise , Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 51 (2013), pp. 28512873.

[3] J. W. Cahn and J. E. Hilliard , Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258267.

[5] J. W. Cahn , On spinodal decomposition, Acta Metallurgica, 9 (1961), pp. 795801.

[6] W. Chen , S. Conde , C. Wang , X. Wang and S. Wise , A linear energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 52 (2012), pp. 546562.

[9] S. Gu , H. Zhang and Z. Zhang , An energy-stable finite-difference scheme for the binary fluid-surfactant system, J. Comput. Phys., 270 (2014), pp. 416431.

[10] J. Guo , C. Wang , S. M. Wise and X. Yue , An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation, Commun. Math. Sci., 14(2) (2016), pp. 489515.

[11] Z. Hu , S. M. Wise , C. Wang and J. S. Lowengrub , Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), pp. 53235339.

[12] J. Kou and S. Sun , An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces, J. Comput. Appl. Math., 255 (2014), pp. 593604.

[14] J. Kou , S. Sun and X. Wang , Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces, Comput. Methods Appl. Mech. Eng., 292 (2015), pp. 92106.

[15] J. Li , Z. Z. Sun and X. Zhao , A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 55(4) (2012), pp. 805826.

[17] D. Li , Z. Qiao and T. Tang , Characterizing the stabilization size for semi-implicit Fourier-Spetral method to phase field equations, SIAM J. Numer. Anal., 54 (2016), pp. 16531681.

[18] H. Lin and Y. Duan , Surface tension measurements of propane (r–290) and isobutane (r–600a) from (253 to 333)K, J. Chem. Eng. Data, 48 (2003), pp. 13601363.

[19] H. Liao and Z. Sun , Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differential Equations, 26 (2010), pp. 3760.

[20] D. Y. Peng and D. B. Robinson , A new two-constant equation of state, Industrial and Engineering Chemistry Fundamentals, 15(1) (1976), pp. 5964.

[22] Z. Qiao , Z. Sun and Z. Zhang , The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model, Numer. Methods Partial Differential Equations, 28(6) (2012), pp. 18931915.

[23] Z. Qiao and S. Sun , Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state, SIAM J. Sci. Comput., 36(4) (2014), pp. B708B728.

[24] Z. Qiao , Z. Sun and Z. Zhang , Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput., 84 (2015), pp. 653674.

[25] D. B. Robinson , D. Peng and S. Y. Chung , The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol, Fluid Phase Equilibria, 24 (1985), pp. 2541.

[26] J. Shen , C. Wang , X. Wang and S. M. Wise , Second–order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), pp. 105125.

[27] J. Shen and X. Yang , Numerical approximations of Allen–Cahn and Cahn–Hilliard equations, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), pp. 16691691.

[28] Z. Sun , A second–order accurate linearized difference scheme for the two–dimensional Cahn–Hilliard equation, Math. Comput., 64(212) (1995), pp. 14631471.

[30] P. Vignal , L. Dalcin , D. L. Brown , N. Collier and V. M. Calo , An energy-stable convex splitting for the phase-field crystal equation, Comput. Struct., 158 (2015), pp. 355368.

[32] C. Wang and S. M Wise , An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49 (2011), pp. 945969.

[33] S. M. Wise , C. Wang and J. S. Lowengrub , An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), pp. 22692288.

[34] C. Xu and T. Tang , Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), pp. 17591779.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 77 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 23rd September 2017. This data will be updated every 24 hours.