[1]
Lim K. O., Lee K. S. and Song T. H., Primary and secondary instabilities in a glass-melting surface, Numer. Heat Transfer A, 36 (1999), pp. 309–325.

[2]
Iwanik P. O. and Chiu W. K., Temperature distribution of an optical fiber traversing through a chemical vapor deposition reactor, Numer. Heat Transfer A, 43 (2003), pp. 221–237.

[3]
Polezhaev V. I., Myakshina M. N. and Nikitin S. A., Heat transfer due to buoyancy-driven convective interaction in enclosures: Fundamentals and applications, Int. J. Heat Mass Transfer, 55 (2012), pp. 156–165.

[4]
Choi U. S., Enhancing thermal conductivity of fluids with nanoparticels, ASME FED, 231 (1995), pp. 99–106.

[5]
Das S. K., Choi U. S., Yu W. and Pardeep T., Nnaofluids: Science and Technology, John Wiley & Sons, 2007.

[6]
Nnanna A. G., Experimental model of temperature-driven nanofluid, ASME J. Heat Transfer, 129 (2007), pp. 697–704.

[7]
Khanafer K., Vafai K. and Lightstone M., Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46 (2003), pp. 3639–3653.

[8]
Jahanshahi M., Hosseinizadeh S. F. and Alipanah M.
et al., Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO_{2} nanofluid, Int. Commun. Heat Mass Transfer, 37 (2010), pp. 687–694.

[9]
Moreau M., Magnetohydrodynamics, Kluwer Acadamic Publishers, 1990.

[10]
Sathiyamoorthy M. and Chamkha A., Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s), J. Therm. Sci., 49 (2010), pp. 1856–1865.

[11]
Sheikholeslami M., Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition, Euro. Phys. J. Plus, 129 (2014), pp. 1–12.

[12]
Sheikholeslami M. and Ellahi R., Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transfer, 89 (2015), pp. 799–808.

[13]
Kefayati G. H. R., Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution, Powder Technol., 243 (2013), pp. 171–183.

[14]
Mejri I., Mahmoudi A. and Abbassi M. A.
et al., Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls, Powder Technol., 266 (2014), pp. 340–353.

[15]
Sheikholeslami M. and Ganji D. D., Entropy generation of nanofluid in presence of magnetic field using lattice Boltzmann method, Phys. A, 417 (2015), pp. 273–286.

[16]
Sheikholeslami M., Ashorynejad H. R. and Rana P., Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation, J. Mol. Liq., 214 (2016), pp. 86–95.

[17]
Sheikholeslami M., Vajravelu K. and Rashidi M. M., Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field, Int. J. Heat Mass Transfer, 92 (2016), pp. 339–348.

[18]
Sheikholeslami M., Hayat T. and Alsaedi A., MHD free convection of Al_{2}O_{3}-water nanofluid considering thermal radiation: A numerical study, Int. J. Heat Mass Transfer, 96 (2016), pp. 513–524.

[19]
Sheikholeslamia M. and Chamkha A. J., Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall, Numer. Heat Tranfer A Appl., 69 (2016), pp. 781–793.

[20]
Sheikholeslamia M. and Chamkhab A. J., Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field, Numer. Heat Tranfer A Appl., 69 (2016), pp. 1189–1200.

[21]
Chen H., Ding Y. and Lapkin A.
et al., Rheological behaviour of ethylene glycol-titanate nanotube nanofluids, J. Nanopart. Res., 11 (2009), pp. 1513–1520.

[22]
Phuoc T. X., Massoudi M., Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe_{2}O_{3}-deionized water nanofluids, Int. J. Therm. Sci., 48 (2009), pp. 1294–1301.

[23]
Ellahi R., The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Appl. Math. Model., 37 (2013), pp. 1451–1467.

[24]
Kefayati Gh. R., FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field, Int. J. Therm. Sci., 95 (2015), pp. 29–46.

[25]
Li B. T., Lin Y. H., Zhu L. L. and Zhang W., Effects of non-Newtonian behaviour on the thermal performance of nanofluids in a horizontal channel with discrete regions of heating and cooling, Appl. Therm. Eng., 94 (2016), pp. 404–412.

[26]
Wakitani S., Formation of cells in natural convection in a vertical slot at large Prandtl number, J. Fluid Mech., 314 (1996), pp. 299–314.

[27]
Succi S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, 2001.

[28]
Guo Z. L. and Shu C., Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, 2013.

[29]
Chai Z. H., Huang C. S., Shi B. C. and Guo Z. L., A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transfer, 98 (2016), pp. 687–696.

[30]
Kang Q., Lichtner P. C. and Janecky D. R., Lattice Boltzmann method for reacting flows in porous media, Adv. Appl. Math. Mech., 2 (2010), pp. 545–563.

[31]
Hu Y., Niu X. D. and Shu S.
et al., Natural convection in a concentric annulus: a lattice Boltzmann method study with boundary condition-enforced immersed boundary method, Adv. Appl. Math. Mech., 5 (2013), pp. 321–336.

[32]
Yang L. M., Shu C. and Wu J., Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows, Adv. Appl. Math. Mech., 4 (2012), pp. 454–472.

[33]
Huang C. S., Chai Z. H. and Shi B. C., Non-Newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Commun. Comput. Phys., 13 (2013), pp. 916–928.

[34]
Luo L. S. and Girimaji S. S., Theory of the lattice Boltzmann method: two-fluid model for binary mixtures, Phys. Rev. E, 67 (2003), 036302.

[35]
Du R., Liu W. W., A new multiple-relaxation-time lattice Boltzmann method for natural convection, J. Sci. Comput., 56 (2013), 122–130.

[36]
Chai Z. H., Shi B. C. and Guo Z. L., A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations, J. Sci. Comput., 69 (2016), pp. 355–390.

[37]
Kamyar A., Saidur R. and Hasanuzzaman M., Application of computational fluid dynamics (CFD) for nanofluids, Int. J. Heat Mass Transfer, 55 (2012), pp. 4104–4115.

[38]
Sheikholeslami M. and Ellahi R., Simulation of ferrofluid flow for magnetic drug targeting using the lattice Boltzmann method, Z. Naturfors. A, 70 (2015), pp. 115–124.

[39]
Wang L., Chai Z. H. and Shi B. C., Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures, Int. J. Heat Mass Transfer, 102 (2016), pp. 381–395.

[40]
Xuan Y. and Roetzel W., Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000), pp. 3701–3707.

[41]
Sheikholeslami M., KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel, Phys. Lett. A, 378 (2014), pp. 3331–3339.

[42]
Sheikholeslami M., Effect of uniform suction on nanofluid flow and heat transfer over a cylinder, 37 (2015), pp. 1623–1633.

[43]
Wang X. Q. and Mujumdar A. S., Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46 (2007), pp. 1–19.

[44]
Rea U., McKrell T. and Hu L.
et al., Laminar convective heat transfer and viscous pressure loss of aluminaCwater and zirconia-water nanofluids, Int. J. Heat Mass Transfer, 52 (2009), pp. 2042–2048.

[45]
Maxwell-Garnett J. C., Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. A, 203 (1904), pp. 385–420.

[46]
Brinkman H. C., The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952), pp. 571–571.

[47]
Neofytou P., A 3rd order upwind finite volume method for generalised Newtonian fluid flows, Adv. Eng. Software, 36 (2005), pp. 664–680.

[48]
Chai Z. H., Shi B. C. and Guo Z. L.
et al., Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows, J. Non-Newton. Fluid Mech., 166 (2011), pp. 332–342.

[49]
He N. Z., Wang N. C. and Shi B. C.
et al., A unified incompressible lattice BGK model and its application to three-dimensional lid-driven cavity flow, Chin. Phys., 13 (2002), 40.

[50]
Guo Z. L., Shi B. C. and Wang N. C., Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165 (2000), pp. 288–306

[51]
Guo Z. L., Zheng C. G. and Shi B. C., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65 (2002), 046308.

[52]
Chai Z. H. and Zhao T. S., Lattice Boltzmann model for the convection-diffusion equation, Phys. Rev. E, 87 (2013), 063309.