This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]
P. O. Iwanik and W. K. Chiu , Temperature distribution of an optical fiber traversing through a chemical vapor deposition reactor, Numer. Heat Transfer A, 43 (2003), pp. 221–237.

[3]
V. I. Polezhaev , M. N. Myakshina and S. A. Nikitin , Heat transfer due to buoyancy-driven convective interaction in enclosures: Fundamentals and applications, Int. J. Heat Mass Transfer, 55 (2012), pp. 156–165.

[5]
S. K. Das , U. S. Choi , W. Yu and T. Pardeep , Nnaofluids: Science and Technology, John Wiley & Sons, 2007.

[6]
A. G. Nnanna , Experimental model of temperature-driven nanofluid, ASME J. Heat Transfer, 129 (2007), pp. 697–704.

[7]
K. Khanafer , K. Vafai and M. Lightstone , Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46 (2003), pp. 3639–3653.

[8]
M. Jahanshahi , S. F. Hosseinizadeh and M. Alipanah
et al., Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid, Int. Commun. Heat Mass Transfer, 37 (2010), pp. 687–694.

[9]
M. Moreau , Magnetohydrodynamics, Kluwer Acadamic Publishers, 1990.

[10]
M. Sathiyamoorthy and A. Chamkha , Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s), J. Therm. Sci., 49 (2010), pp. 1856–1865.

[12]
M. Sheikholeslami and R. Ellahi , Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transfer, 89 (2015), pp. 799–808.

[13]
G. H. R. Kefayati , Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution, Powder Technol., 243 (2013), pp. 171–183.

[14]
I. Mejri , A. Mahmoudi and M. A. Abbassi
et al., Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls, Powder Technol., 266 (2014), pp. 340–353.

[15]
M. Sheikholeslami and D. D. Ganji , Entropy generation of nanofluid in presence of magnetic field using lattice Boltzmann method, Phys. A, 417 (2015), pp. 273–286.

[16]
M. Sheikholeslami , H. R. Ashorynejad and P. Rana , Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation, J. Mol. Liq., 214 (2016), pp. 86–95.

[17]
M. Sheikholeslami , K. Vajravelu and M. M. Rashidi , Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field, Int. J. Heat Mass Transfer, 92 (2016), pp. 339–348.

[18]
M. Sheikholeslami , T. Hayat and A. Alsaedi , MHD free convection of Al2O3-water nanofluid considering thermal radiation: A numerical study, Int. J. Heat Mass Transfer, 96 (2016), pp. 513–524.

[19]
M. Sheikholeslamia and A. J. Chamkha , Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall, Numer. Heat Tranfer A Appl., 69 (2016), pp. 781–793.

[22]
T. X. Phuoc , M. Massoudi , Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids, Int. J. Therm. Sci., 48 (2009), pp. 1294–1301.

[23]
R. Ellahi , The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Appl. Math. Model., 37 (2013), pp. 1451–1467.

[24]
Gh. R. Kefayati , FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field, Int. J. Therm. Sci., 95 (2015), pp. 29–46.

[25]
B. T. Li , Y. H. Lin , L. L. Zhu and W. Zhang , Effects of non-Newtonian behaviour on the thermal performance of nanofluids in a horizontal channel with discrete regions of heating and cooling, Appl. Therm. Eng., 94 (2016), pp. 404–412.

[26]
S. Wakitani , Formation of cells in natural convection in a vertical slot at large Prandtl number, J. Fluid Mech., 314 (1996), pp. 299–314.

[28]
Z. L. Guo and C. Shu , Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, 2013.

[29]
Z. H. Chai , C. S. Huang , B. C. Shi and Z. L. Guo , A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transfer, 98 (2016), pp. 687–696.

[31]
Y. Hu , X. D. Niu and S. Shu
et al., Natural convection in a concentric annulus: a lattice Boltzmann method study with boundary condition-enforced immersed boundary method, Adv. Appl. Math. Mech., 5 (2013), pp. 321–336.

[32]
L. M. Yang , C. Shu and J. Wu , Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows, Adv. Appl. Math. Mech., 4 (2012), pp. 454–472.

[33]
C. S. Huang , Z. H. Chai and B. C. Shi , Non-Newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Commun. Comput. Phys., 13 (2013), pp. 916–928.

[34]
L. S. Luo and S. S. Girimaji , Theory of the lattice Boltzmann method: two-fluid model for binary mixtures, Phys. Rev. E, 67 (2003), 036302.

[35]
R. Du , W. W. Liu , A new multiple-relaxation-time lattice Boltzmann method for natural convection, J. Sci. Comput., 56 (2013), 122–130.

[36]
Z. H. Chai , B. C. Shi and Z. L. Guo , A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations, J. Sci. Comput., 69 (2016), pp. 355–390.

[37]
A. Kamyar , R. Saidur and M. Hasanuzzaman , Application of computational fluid dynamics (CFD) for nanofluids, Int. J. Heat Mass Transfer, 55 (2012), pp. 4104–4115.

[39]
L. Wang , Z. H. Chai and B. C. Shi , Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures, Int. J. Heat Mass Transfer, 102 (2016), pp. 381–395.

[40]
Y. Xuan and W. Roetzel , Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000), pp. 3701–3707.

[41]
M. Sheikholeslami , KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel, Phys. Lett. A, 378 (2014), pp. 3331–3339.

[43]
X. Q. Wang and A. S. Mujumdar , Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46 (2007), pp. 1–19.

[44]
U. Rea , T. McKrell and L. Hu
et al., Laminar convective heat transfer and viscous pressure loss of aluminaCwater and zirconia-water nanofluids, Int. J. Heat Mass Transfer, 52 (2009), pp. 2042–2048.

[45]
J. C. Maxwell-Garnett , Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. A, 203 (1904), pp. 385–420.

[46]
H. C. Brinkman , The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952), pp. 571–571.

[47]
P. Neofytou , A 3rd order upwind finite volume method for generalised Newtonian fluid flows, Adv. Eng. Software, 36 (2005), pp. 664–680.

[48]
Z. H. Chai , B. C. Shi and Z. L. Guo
et al., Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows, J. Non-Newton. Fluid Mech., 166 (2011), pp. 332–342.

[50]
Z. L. Guo , B. C. Shi and N. C. Wang , Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165 (2000), pp. 288–306

[51]
Z. L. Guo , C. G. Zheng and B. C. Shi , Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65 (2002), 046308.

[52]
Z. H. Chai and T. S. Zhao , Lattice Boltzmann model for the convection-diffusion equation, Phys. Rev. E, 87 (2013), 063309.