Skip to main content Accessibility help

Lattice Boltzmann Study of a Vortex Ring Impacting Spheroidal Particles

  • Chunlong Yu (a1), Haibo Huang (a1) and Xiyun Lu (a1)


Interaction of vortex rings with solid is an important research topic of hydrodynamic. In this study, a multiple-relaxation time (MRT) lattice Boltzmann method (LBM) is used to investigate the flow of a vortex ring impacting spheroidal particles. The MRT-LBM is validated through the cases of vortex ring impacting a flat wall. The vortex evolution due to particle size, the aspect ratio of a prolate particle, as well as Reynolds (Re) number are discussed in detail. When the vortex ring impacting a stationary sphere, the primary and secondary vortex rings wrap around each other, which is different from the situation of the vortex ring impacting a plate. For the vortex ring impacting with a prolate spheroid, the secondary vortex ring stretches mainly along the long axis of the ellipsoid particle. However, it is found that after the vortex wrapping stage, the primary vortex recovers along the short axis of the particle faster than that in the long axis, i.e., the primary vortex ring stretches mainly along the short axis of the particle. That has never been address in the literature.


Corresponding author

* Corresponding author. Email:


Hide All
[1] Cheng, M., Lou, J. and Luo, L. S., Numerical study of a vortex ring impacting aflat wall, J. Fluid Mech., 660 (2010), pp. 430455.
[2] Lim, T. T., Nickels, T. B. and Chong, M. S., A note on the cause of rebound in the head-on collision of a vortex ring with a wall, Exp. Fluids, 12 (1991), pp. 4148.
[3] Orlandi, P. and Verzicco, R., Vortex rings impinging on walls: axisymmetric and threedimensional simulations, J. Fluid Mech., 256 (1993), pp. 615646.
[4] Naguib, A. M. and Koochesfahani, M. M., On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction, Phys. Fluids, 16 (2004), pp. 26132622.
[5] Chu, C. C., Wang, C. T. and Chang, C. C., A vortex ring impinging on a solid plane surface- Vortex structure and surface force, Phys. Fluids A, 7 (1995), pp. 13911401.
[6] Saffman, P. G., The approach of a vortex pair to a plane surface in inviscid fluid, J. Fluid Mech., 92 (1979), pp. 497503.
[7] Kiya, K., Ohyama, M. and Hunt, J. C. R., Vortex pairs and rings interacting with shear-layer vortices, J. Fluid Mech., 172 (1986), pp. 115.
[8] Liu, C. H., Vortex simulation of unsteady shear flow induced by a vortex ring, Comput. Fluids, 31 (2002), pp. 183207.
[9] Allen, J. J., Jouanne, Y. and Shashikanth, B. N., Vortex interaction with a moving sphere, J. Fluid Mech., 587 (2007), pp. 337346.
[10] Ferreira de Sousa, P. J. S. A., Three-dimensional instability on the interaction between a vortex and a stationary sphere, Theor. Comput. Fluid Dyn., (2011), 110239-5.
[11] Yu, D., Mei, R., Luo, L. S. and Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci., 39 (2003), pp. 329367.
[12] He, X. and Doolen, G. D. et al., Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations, J. Comput. Phys., 179 (2002), pp. 439451.
[13] Bhatnagar, P. L., Gross, E. P. and Krookm, M., A model for collision processes in gases 1, Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), pp. 511525.
[14] d’Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P. and Luo, L-S, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. Royal Society of London: Series A, 360 (2002), pp. 437451.
[15] Lallemand, P. and Luo, L-S, Lattice Boltzmann method for moving boundaries, J. Comput. Phys., 184 (2003), pp. 406421.
[16] Lamb, H., Hydrodynamics, Cambridge University Press.
[17] Huang, H. B., Yang, X., Krafczyk, M. and Lu, X. Y., Rotation of spheroidal particles in Couette flows, J. Fluid Mech., 692 (2012), pp. 369394.
[18] Chen, Y., Cai, Q. D., Xia, Z. H., Wang, M. R. and Chen, S. Y., Momentum-exchange method in lattice Boltzmann simulations ofparticle-fluid interactions, Phys. Rev. E, 88 (2013), 013303.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed