This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.
[1]
K. Jambunathan , E. Lai , M. A. Moss and B. L. Button , A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow, 13 (1992), pp. 106–115.
[2]
R. Viskanta , Heat transfer to impinging isothermal gas and flame jets, Exp. Thermal Fluid Sci., 6 (1993), pp. 111–134.
[3]
K. Ichimiya and Y. Yoshida , Oscillation effect of impingement surface on two-dimensional impingement heat transfer
ASME J. Heat Transfer, 131 (2009), 011701.
[4]
H. Martin , Heat and mass transfer between impinging gas jets and solid surfaces, in: PH James (Eds), Advances in Heat Transfer, Elsevier, New York, 1977, pp. 1–60.
[5]
J. W. Baughn and S. Shimizu , Heat transfer measurements from a surface with uniform heat flux and an impinging jet, ASME J. Heat Transfer, 111(4) (1989), pp. 1096–1098.
[6]
D. Cooper , D. C. Jackson , B. E. Launder and G. X. Liao , Impinging jet studies for turbulence model assessment: I. Flow-field experiments, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 2675–2684.
[7]
H. S. Hussain and F. Hussain , The elliptic whistler jet, J. Fluid Mech., 397 (1999), pp. 23–44.
[8]
L. F. G. Geers , M. J. Tummers and K. Hanjalic , Experimental investigation of impinging jet arrays, Exp. Fluids, 36 (2004), pp. 946–958.
[10]
O. Vipat , S. S. Feng , T. Kim , A. M. Pradeep and T. J. Lu , Asymmetric entrainment effect on the local surface temperature of a flat plate heated by an obliquely impinging two-dimensional jet, Int. J. Heat Mass Transfer, 52 (2009), pp. 5250–5257.
[11]
H. Q. Yang , T. Kim , T. J. Lu and K. Ichimiya , Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling, Int. J. Heat Mass Transfer, 53 (2010), pp. 4092–4100.
[12]
Z. K. Zhang and L. P. Chua , Mixing due to a heated elliptic air jet, Int. J. Heat Mass Transfer, 55 (2012), pp. 4566–4579.
[13]
Y. Xu , L. H. Feng and J. J. Wang , Experimental investigation of a synthetic jet impinging on a fixed wall, Exp. Fluids, 54 (2013), 1512.
[14]
Y. F. Xing and B. Weigand , Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes, ASME J. Heat Transfer, 135 (2013), 072201.
[15]
J. Z. Zhang , S. Gao and X. M. Tan , Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontally forced flow, Int. J. Heat Mass Transfer, 57 (2013), pp. 321–330.
[16]
Y. H. Xie , P. Li , J. B. Lan and D. Zhang , Flow and heat transfer characteristics of single jet impinging on dimpled surface, ASME: J. Heat Transfer, 135 (2013), 052201.
[17]
D. Zhang , H. C. Qu , J. B. Lan , J. H. Chen and Y. H. Xie , Flow and heat transfer characteristics of single jet impinging on protrusioned surface, Int. J. Heat Mass Transfer, 58 (2013), pp. 18–28.
[18]
C. Kang and H. X. Liu , Turbulent features in the coherent central region of a plane water jet issuing into quiescent air, ASME J. Fluids Eng., 136 (2014), 081205.
[19]
Y. Z. Yu , J. Z. Zhang and H. S. Xu , Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs, Int. J. Heat Mass Transfer, 72 (2014), pp. 222–233.
[20]
S. S. Feng , J. J. Kuang , T. Wen , T. J. Lu and K. Ichimiya , An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, Int. J. Heat Mass Transfer, 77 (2014), pp. 1063–1074.
[21]
K. Wang , H. W. Li and J. Q. Zhu , Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow, Appl. Thermal Eng., 70 (2014), pp. 620–629.
[22]
X. L. Wang , H. B. Yan , T. J. Lu , S. J. Song and T. Kim , Heat transfer characteristics of an inclined impinging jet on a curved surface in crossflow, ASME J. Heat Transfer, 136 (2014), 081702.
[23]
C. J. Zhang , G. Q. Xu , H. W. Li , J. N. Sun and N. Cai , The effect of weak crossflow on the heat transfer characteristics of short-distance impinging cooling, ASME J. Heat Transfer, 136 (2014), 112201.
[24]
Y. Z. Yu , J. Z. Zhang and Y. Shan , Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel, Int. J. Heat Mass Transfer, 80 (2015), pp. 126–138.
[25]
T. J. Craft , L. Graham and B. E. Launder , Impinging jet studies for turbulence model assessment II. An examination of the performance of four turbulence models, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 2685–2697.
[26]
T. S. Park and H. J. Sung , Development of a near-wall turbulence model and application to jet impingement heat transfer, Int. J. Heat Fluid Flow, 22(1) (2001), pp. 10–18.
[27]
N. Zuckerman and N. Lior , Jet impingement heat transfer: physics, correlations, and numerical modeling, Adv. Heat Transfer, 39 (2006), pp. 565–631.
[28]
M. Z. Yu , L. H. Chen , H. H. Jin and J. R. Fan , Large eddy simulation of coherent structure of impinging jet, J. Thermal Sci., 14(2) (2005), pp. 150–155.
[29]
S. Rhea , M. Bini , M. Fairweather and W. P. Jones , RANS modelling and LES of a single-phase, impinging plane jet, Comput. Chem. Eng., 33(8) (2009), pp. 1344–1353.
[30]
R. Dutta , A. Dewan and B. Srinivasan , Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer, Int. J. Heat Mass Transfer, 65 (2013), pp. 750–764.
[31]
Y. Q. Zu , Y. Y. Yan and J. Maltson , Numerical study on stagnation point heat transfer by jet impingement in a confined narrow gap, ASME J. Heat Transfer, 131 (2009), 094504.
[32]
P. Xu , B. M. Yu , S. X. Qiu , H. J. Poh and A. S. Mujumdar , Turbulent impinging jet heat transfer enhancement due to intermittent pulsation, Int. J. Thermal Sci., 49 (2010), pp. 1247–1252.
[33]
Z. Liu and Z. P. Feng , Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge, Int. J. Heat Mass Transfer, 54 (2011), pp. 4949–4959.
[36]
P. Wang , J. Z. Lv , M. L. Bai , Y. Y. Wang and C. Z. Hu , Numerical investigation of the flow and heat behaviours of an impinging jet, Int. J. Comput. Fluid Dyn., 28(6-10) (2014), pp. 301–315.
[37]
M. Olsson and L. Fuchs , Large eddy simulations of a forced semiconfined circular impinging jet, Phys. Fluids, 10(2) (1998), pp. 476–486.
[38]
P. R. Voke and S. Gao , Numerical study of heat transfer from an impinging jet, Int. J. Heat Mass Transfer, 41(4-5) (1998), pp. 671–680.
[39]
T. Cziesla , G. Biswas , H. Chattopadhyay and N. K. Mitra , Large-eddy simulation of flow and heat transfer in an impinging slot jet, Int. J. Heat Fluid Flow, 22(5) (2001), pp. 500–508.
[40]
M. Tsubokura , T. Kobayashi , N. Taniguchi and W. P. Jones , A numerical study on the eddy structures of impinging jets excited at the inlet, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 500–511.
[41]
F. Beaubert and S. Viazzo , Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 512–519.
[43]
Z. Q. Yin and J. Z. Lin , Numerical simulation of the formation of nanoparticles in an impinging twin-jet, J. Hydrodyn. Ser. B, 19(5) (2007), pp. 533–541.
[44]
J. Y. Fan , Y. Zhang and D. Z. Wang , Large-eddy simulation of three domensional vortical structures for an impinging transverse jet in the near region, J. Hydrodyn. Ser. B, 19(3) (2007), pp. 314–321.
[45]
M. Popovac and K. Hanjalic , Large-eddy simulations of flow over a jet-impinged wall-mounted cube in a cross stream, Int. J. Heat Fluid Flow, 28 (2007), pp. 1360–1378.
[47]
N. Uddin , S. O. Neumann , B. Weigand and B. A. Younis , Large-eddy simulations and heat-flux modeling in a turbulent impinging jet, Numer. Heat Transfer Part A, 55 (2009), pp. 906–930.
[50]
M. Germano , U. Piomelli , P. Moin and W. Cabot , A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3(7) (1991), pp. 1760–1765.
[51]
G. Lodato , L. Vervisch and P. Domingo , A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, 21 (2009), 0351023.
[52]
A. Dewan , R. Dutta and B. Srinivasan , Recent trends in computation of turbulent jet impingement heat transfer, Heat Transfer Eng., 33(4-5) (2012), pp. 447–460.
[54]
T. Dairay , V. Fortun , E. Lamballais and L. E. Brizzi , LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow
50 (2014), pp. 177–187.
[55]
W. Wu and U. Piomelli , Large-eddy simulation of impinging jets with embedded azimuthal vortices, J. Turbulence, 16(1) (2015), pp. 44–66.
[57]
U. Piomelli and J. H. Liu , Large-eddy simulation of rotating channel flows using a locallized dynamic-model, Phys. Fluids, 7(4) (1995), pp. 839–848.
[58]
N. N. Smirnov , V. B. Betelin , R. M. Shagaliev , V. F. Nikitin , I. M. Belyakov , Yu. N. Deryuguin , S. V. Aksenov and D. A. Korchazhkin , Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39 (2014), pp. 10748–10756.
[59]
V. B. Betelin , R. M. Shagaliev , S. V. Aksenov , I. M. Belyakov , Yu. N. Deryuguin , D. A. Korchazhkin , A. S. Kozelkov , V. F. Nikitin , A. V. Sarazov and D. K. Zelenskiy , Mathematical simulation of hydrogen-Coxygen combustion in rocket engines using LOGOS code, Acta Astronautica, 96 (2014), pp. 53–64.