Skip to main content
×
×
Home

LES of Normally Impinging Elliptic Air-Jet Heat Transfer at Re=4400

  • Yongping Li (a1), Qizhao Lin (a1) and Zuojin Zhu (a2)
Abstract
Abstract

Jet impingement induced heat transfer is an important issue in engineering science. This paper presents results of large eddy simulation (LES) of normally impinging elliptic air-jet heat transfer at a Reynolds number of 4400, with orifice-to-plate distance fixed to be 5 in the unit of jet nozzle effective diameter . The elliptic aspect ratio (a/b) is 3/2. While the target wall is heated under some condition of constant heat flux. The LES are carried out using dynamic subgrid model and Open-FOAM. The distributions ofmean velocity components, velocity fluctuations, and subgrid stresses in vertical and radial directions, and the Nusselt numbers involving heat transfer through the target wall are discussed. The comparison with existing experimental and numerical results shows good agreement.

Copyright
Corresponding author
*Corresponding author. Email: zuojin@ustc.edu.cn (Z. J. Zhu)
References
Hide All
[1] Jambunathan K., Lai E., Moss M. A. and Button B. L., A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow, 13 (1992), pp. 106115.
[2] Viskanta R., Heat transfer to impinging isothermal gas and flame jets, Exp. Thermal Fluid Sci., 6 (1993), pp. 111134.
[3] Ichimiya K. and Yoshida Y., Oscillation effect of impingement surface on two-dimensional impingement heat transfer ASME J. Heat Transfer, 131 (2009), 011701.
[4] Martin H., Heat and mass transfer between impinging gas jets and solid surfaces, in: James PH (Eds), Advances in Heat Transfer, Elsevier, New York, 1977, pp. 160.
[5] Baughn J. W. and Shimizu S., Heat transfer measurements from a surface with uniform heat flux and an impinging jet, ASME J. Heat Transfer, 111(4) (1989), pp. 10961098.
[6] Cooper D., Jackson D. C., Launder B. E. and Liao G. X., Impinging jet studies for turbulence model assessment: I. Flow-field experiments, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 26752684.
[7] Hussain H. S. and Hussain F., The elliptic whistler jet, J. Fluid Mech., 397 (1999), pp. 2344.
[8] Geers L. F. G., Tummers M. J. and Hanjalic K., Experimental investigation of impinging jet arrays, Exp. Fluids, 36 (2004), pp. 946958.
[9] Li C. G. and Zhou J. M., Experimental and numerical simulation study of heat transfer due to confined impinging circular jet, Chem. Eng. Technol., 30(10) (2007), pp. 13551361.
[10] Vipat O., Feng S. S., Kim T., Pradeep A. M. and Lu T. J., Asymmetric entrainment effect on the local surface temperature of a flat plate heated by an obliquely impinging two-dimensional jet, Int. J. Heat Mass Transfer, 52 (2009), pp. 52505257.
[11] Yang H. Q., Kim T., Lu T. J. and Ichimiya K., Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling, Int. J. Heat Mass Transfer, 53 (2010), pp. 40924100.
[12] Zhang Z. K. and Chua L. P., Mixing due to a heated elliptic air jet, Int. J. Heat Mass Transfer, 55 (2012), pp. 45664579.
[13] Xu Y., Feng L. H. and Wang J. J., Experimental investigation of a synthetic jet impinging on a fixed wall, Exp. Fluids, 54 (2013), 1512.
[14] Xing Y. F. and Weigand B., Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes, ASME J. Heat Transfer, 135 (2013), 072201.
[15] Zhang J. Z., Gao S. and Tan X. M., Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontally forced flow, Int. J. Heat Mass Transfer, 57 (2013), pp. 321330.
[16] Xie Y. H., Li P., Lan J. B. and Zhang D., Flow and heat transfer characteristics of single jet impinging on dimpled surface, ASME: J. Heat Transfer, 135 (2013), 052201.
[17] Zhang D., Qu H. C., Lan J. B., Chen J. H. and Xie Y. H., Flow and heat transfer characteristics of single jet impinging on protrusioned surface, Int. J. Heat Mass Transfer, 58 (2013), pp. 1828.
[18] Kang C. and Liu H. X., Turbulent features in the coherent central region of a plane water jet issuing into quiescent air, ASME J. Fluids Eng., 136 (2014), 081205.
[19] Yu Y. Z., Zhang J. Z. and Xu H. S., Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs, Int. J. Heat Mass Transfer, 72 (2014), pp. 222233.
[20] Feng S. S., Kuang J. J., Wen T., Lu T. J. and Ichimiya K., An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, Int. J. Heat Mass Transfer, 77 (2014), pp. 10631074.
[21] Wang K., Li H. W. and Zhu J. Q., Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow, Appl. Thermal Eng., 70 (2014), pp. 620629.
[22] Wang X. L., Yan H. B., Lu T. J., Song S. J. and Kim T., Heat transfer characteristics of an inclined impinging jet on a curved surface in crossflow, ASME J. Heat Transfer, 136 (2014), 081702.
[23] Zhang C. J., Xu G. Q., Li H. W., Sun J. N. and Cai N., The effect of weak crossflow on the heat transfer characteristics of short-distance impinging cooling, ASME J. Heat Transfer, 136 (2014), 112201.
[24] Yu Y. Z., Zhang J. Z. and Shan Y., Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel, Int. J. Heat Mass Transfer, 80 (2015), pp. 126138.
[25] Craft T. J., Graham L. and Launder B. E., Impinging jet studies for turbulence model assessment II. An examination of the performance of four turbulence models, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 26852697.
[26] Park T. S. and Sung H. J., Development of a near-wall turbulence model and application to jet impingement heat transfer, Int. J. Heat Fluid Flow, 22(1) (2001), pp. 1018.
[27] Zuckerman N. and Lior N., Jet impingement heat transfer: physics, correlations, and numerical modeling, Adv. Heat Transfer, 39 (2006), pp. 565631.
[28] Yu M. Z., Chen L. H., Jin H. H. and Fan J. R., Large eddy simulation of coherent structure of impinging jet, J. Thermal Sci., 14(2) (2005), pp. 150155.
[29] Rhea S., Bini M., Fairweather M. and Jones W. P., RANS modelling and LES of a single-phase, impinging plane jet, Comput. Chem. Eng., 33(8) (2009), pp. 13441353.
[30] Dutta R., Dewan A. and Srinivasan B., Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer, Int. J. Heat Mass Transfer, 65 (2013), pp. 750764.
[31] Zu Y. Q., Yan Y. Y. and Maltson J., Numerical study on stagnation point heat transfer by jet impingement in a confined narrow gap, ASME J. Heat Transfer, 131 (2009), 094504.
[32] Xu P., Yu B. M., Qiu S. X., Poh H. J. and Mujumdar A. S., Turbulent impinging jet heat transfer enhancement due to intermittent pulsation, Int. J. Thermal Sci., 49 (2010), pp. 12471252.
[33] Liu Z. and Feng Z. P., Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge, Int. J. Heat Mass Transfer, 54 (2011), pp. 49494959.
[34] Zhang J. J., Xiong Y. P., Qu Z. G. and Tao W. Q., Numerical study of flow and heat transfer performance of deflector under periodic jet impingement, J. Eng. Thermophys., 35(7) (2014), pp. 13951400.
[35] Yalhot V. and Orszag S. A., Renormalization group analysis of turbulence: I. basic theory, J. Sci. Comput., 1 (1986), pp. 151.
[36] Wang P., Lv J. Z., Bai M. L., Wang Y. Y. and Hu C. Z., Numerical investigation of the flow and heat behaviours of an impinging jet, Int. J. Comput. Fluid Dyn., 28(6-10) (2014), pp. 301315.
[37] Olsson M. and Fuchs L., Large eddy simulations of a forced semiconfined circular impinging jet, Phys. Fluids, 10(2) (1998), pp. 476486.
[38] Voke P. R. and Gao S., Numerical study of heat transfer from an impinging jet, Int. J. Heat Mass Transfer, 41(4-5) (1998), pp. 671680.
[39] Cziesla T., Biswas G., Chattopadhyay H. and Mitra N. K., Large-eddy simulation of flow and heat transfer in an impinging slot jet, Int. J. Heat Fluid Flow, 22(5) (2001), pp. 500508.
[40] Tsubokura M., Kobayashi T., Taniguchi N. and Jones W. P., A numerical study on the eddy structures of impinging jets excited at the inlet, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 500511.
[41] Beaubert F. and Viazzo S., Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 512519.
[42] Hällqvist T., Large eddy simulation of impinging jets with heat transfer, Technical Reports from Royal Institute of Technology, Department of Mechanics, 2006, S-100 44 Stockholm, Sweden.
[43] Yin Z. Q. and Lin J. Z., Numerical simulation of the formation of nanoparticles in an impinging twin-jet, J. Hydrodyn. Ser. B, 19(5) (2007), pp. 533541.
[44] Fan J. Y., Zhang Y. and Wang D. Z., Large-eddy simulation of three domensional vortical structures for an impinging transverse jet in the near region, J. Hydrodyn. Ser. B, 19(3) (2007), pp. 314321.
[45] Popovac M. and Hanjalic K., Large-eddy simulations of flow over a jet-impinged wall-mounted cube in a cross stream, Int. J. Heat Fluid Flow, 28 (2007), pp. 13601378.
[46] Hadz˘iabdic M. and Hanjalic K., Vortical structures and heat transfer in a round impinging jet, J. Fluid Mech., 596 (2008), pp. 221260.
[47] Uddin N., Neumann S. O., Weigand B. and Younis B. A., Large-eddy simulations and heat-flux modeling in a turbulent impinging jet, Numer. Heat Transfer Part A, 55 (2009), pp. 906930.
[48] Uddin N., Turbulence Modelling of Complex Flows in CFD, Institute of Aerospace Thermodynamics, Universität Stuttgart, Ph.D Thesis, (2008), pp. 41–43.
[49] Nicoud F., Toda H. B., Cabrit O., Bose S. and Lee J., Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids, 23 (2014), 085106.
[50] Germano M., Piomelli U., Moin P. and Cabot W., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3(7) (1991), pp. 17601765.
[51] Lodato G., Vervisch L. and Domingo P., A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, 21 (2009), 0351023.
[52] Dewan A., Dutta R. and Srinivasan B., Recent trends in computation of turbulent jet impingement heat transfer, Heat Transfer Eng., 33(4-5) (2012), pp. 447460.
[53] Toda H. B., Cabrit O., Truffin K., Bruneaux G. and Nicoud F., Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow, Phys. Fluids, 26 (2014), 075108.
[54] Dairay T., Fortun V., Lamballais E. and Brizzi L. E., LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow 50 (2014), pp. 177187.
[55] Wu W. and Piomelli U., Large-eddy simulation of impinging jets with embedded azimuthal vortices, J. Turbulence, 16(1) (2015), pp. 4466.
[56] Li Y. P., Lin Q. Z., Ye T. H. and Zhu Z. J., Large eddy simulation of a normally impinging round air jet with heat transfer at a Reynolds number of 4400, in: Proceeding of Mechanical and Civil Engineering, ICMCE2612, December 13-14, 2014, Wuhan, China.
[57] Piomelli U. and Liu J. H., Large-eddy simulation of rotating channel flows using a locallized dynamic-model, Phys. Fluids, 7(4) (1995), pp. 839848.
[58] Smirnov N. N., Betelin V. B., Shagaliev R. M., Nikitin V. F., Belyakov I. M., Deryuguin Yu. N., Aksenov S. V. and Korchazhkin D. A., Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39 (2014), pp. 1074810756.
[59] Betelin V. B., Shagaliev R. M., Aksenov S. V., Belyakov I. M., Deryuguin Yu. N., Korchazhkin D. A., Kozelkov A. S., Nikitin V. F., Sarazov A. V. and Zelenskiy D. K., Mathematical simulation of hydrogen-Coxygen combustion in rocket engines using LOGOS code, Acta Astronautica, 96 (2014), pp. 5364.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 183 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2017 - 19th January 2018. This data will be updated every 24 hours.