Skip to main content
    • Aa
    • Aa

LES of Normally Impinging Elliptic Air-Jet Heat Transfer at Re=4400

  • Yongping Li (a1), Qizhao Lin (a1) and Zuojin Zhu (a2)

Jet impingement induced heat transfer is an important issue in engineering science. This paper presents results of large eddy simulation (LES) of normally impinging elliptic air-jet heat transfer at a Reynolds number of 4400, with orifice-to-plate distance fixed to be 5 in the unit of jet nozzle effective diameter . The elliptic aspect ratio (a/b) is 3/2. While the target wall is heated under some condition of constant heat flux. The LES are carried out using dynamic subgrid model and Open-FOAM. The distributions ofmean velocity components, velocity fluctuations, and subgrid stresses in vertical and radial directions, and the Nusselt numbers involving heat transfer through the target wall are discussed. The comparison with existing experimental and numerical results shows good agreement.

Corresponding author
*Corresponding author. Email: (Z. J. Zhu)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] K. Jambunathan , E. Lai , M. A. Moss and B. L. Button , A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow, 13 (1992), pp. 106115.

[2] R. Viskanta , Heat transfer to impinging isothermal gas and flame jets, Exp. Thermal Fluid Sci., 6 (1993), pp. 111134.

[3] K. Ichimiya and Y. Yoshida , Oscillation effect of impingement surface on two-dimensional impingement heat transfer ASME J. Heat Transfer, 131 (2009), 011701.

[4] H. Martin , Heat and mass transfer between impinging gas jets and solid surfaces, in: PH James (Eds), Advances in Heat Transfer, Elsevier, New York, 1977, pp. 160.

[5] J. W. Baughn and S. Shimizu , Heat transfer measurements from a surface with uniform heat flux and an impinging jet, ASME J. Heat Transfer, 111(4) (1989), pp. 10961098.

[6] D. Cooper , D. C. Jackson , B. E. Launder and G. X. Liao , Impinging jet studies for turbulence model assessment: I. Flow-field experiments, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 26752684.

[7] H. S. Hussain and F. Hussain , The elliptic whistler jet, J. Fluid Mech., 397 (1999), pp. 2344.

[8] L. F. G. Geers , M. J. Tummers and K. Hanjalic , Experimental investigation of impinging jet arrays, Exp. Fluids, 36 (2004), pp. 946958.

[10] O. Vipat , S. S. Feng , T. Kim , A. M. Pradeep and T. J. Lu , Asymmetric entrainment effect on the local surface temperature of a flat plate heated by an obliquely impinging two-dimensional jet, Int. J. Heat Mass Transfer, 52 (2009), pp. 52505257.

[11] H. Q. Yang , T. Kim , T. J. Lu and K. Ichimiya , Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling, Int. J. Heat Mass Transfer, 53 (2010), pp. 40924100.

[12] Z. K. Zhang and L. P. Chua , Mixing due to a heated elliptic air jet, Int. J. Heat Mass Transfer, 55 (2012), pp. 45664579.

[13] Y. Xu , L. H. Feng and J. J. Wang , Experimental investigation of a synthetic jet impinging on a fixed wall, Exp. Fluids, 54 (2013), 1512.

[14] Y. F. Xing and B. Weigand , Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes, ASME J. Heat Transfer, 135 (2013), 072201.

[15] J. Z. Zhang , S. Gao and X. M. Tan , Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontally forced flow, Int. J. Heat Mass Transfer, 57 (2013), pp. 321330.

[16] Y. H. Xie , P. Li , J. B. Lan and D. Zhang , Flow and heat transfer characteristics of single jet impinging on dimpled surface, ASME: J. Heat Transfer, 135 (2013), 052201.

[17] D. Zhang , H. C. Qu , J. B. Lan , J. H. Chen and Y. H. Xie , Flow and heat transfer characteristics of single jet impinging on protrusioned surface, Int. J. Heat Mass Transfer, 58 (2013), pp. 1828.

[18] C. Kang and H. X. Liu , Turbulent features in the coherent central region of a plane water jet issuing into quiescent air, ASME J. Fluids Eng., 136 (2014), 081205.

[19] Y. Z. Yu , J. Z. Zhang and H. S. Xu , Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs, Int. J. Heat Mass Transfer, 72 (2014), pp. 222233.

[20] S. S. Feng , J. J. Kuang , T. Wen , T. J. Lu and K. Ichimiya , An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, Int. J. Heat Mass Transfer, 77 (2014), pp. 10631074.

[21] K. Wang , H. W. Li and J. Q. Zhu , Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow, Appl. Thermal Eng., 70 (2014), pp. 620629.

[22] X. L. Wang , H. B. Yan , T. J. Lu , S. J. Song and T. Kim , Heat transfer characteristics of an inclined impinging jet on a curved surface in crossflow, ASME J. Heat Transfer, 136 (2014), 081702.

[23] C. J. Zhang , G. Q. Xu , H. W. Li , J. N. Sun and N. Cai , The effect of weak crossflow on the heat transfer characteristics of short-distance impinging cooling, ASME J. Heat Transfer, 136 (2014), 112201.

[24] Y. Z. Yu , J. Z. Zhang and Y. Shan , Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel, Int. J. Heat Mass Transfer, 80 (2015), pp. 126138.

[25] T. J. Craft , L. Graham and B. E. Launder , Impinging jet studies for turbulence model assessment II. An examination of the performance of four turbulence models, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 26852697.

[26] T. S. Park and H. J. Sung , Development of a near-wall turbulence model and application to jet impingement heat transfer, Int. J. Heat Fluid Flow, 22(1) (2001), pp. 1018.

[27] N. Zuckerman and N. Lior , Jet impingement heat transfer: physics, correlations, and numerical modeling, Adv. Heat Transfer, 39 (2006), pp. 565631.

[28] M. Z. Yu , L. H. Chen , H. H. Jin and J. R. Fan , Large eddy simulation of coherent structure of impinging jet, J. Thermal Sci., 14(2) (2005), pp. 150155.

[29] S. Rhea , M. Bini , M. Fairweather and W. P. Jones , RANS modelling and LES of a single-phase, impinging plane jet, Comput. Chem. Eng., 33(8) (2009), pp. 13441353.

[30] R. Dutta , A. Dewan and B. Srinivasan , Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer, Int. J. Heat Mass Transfer, 65 (2013), pp. 750764.

[31] Y. Q. Zu , Y. Y. Yan and J. Maltson , Numerical study on stagnation point heat transfer by jet impingement in a confined narrow gap, ASME J. Heat Transfer, 131 (2009), 094504.

[32] P. Xu , B. M. Yu , S. X. Qiu , H. J. Poh and A. S. Mujumdar , Turbulent impinging jet heat transfer enhancement due to intermittent pulsation, Int. J. Thermal Sci., 49 (2010), pp. 12471252.

[33] Z. Liu and Z. P. Feng , Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge, Int. J. Heat Mass Transfer, 54 (2011), pp. 49494959.

[36] P. Wang , J. Z. Lv , M. L. Bai , Y. Y. Wang and C. Z. Hu , Numerical investigation of the flow and heat behaviours of an impinging jet, Int. J. Comput. Fluid Dyn., 28(6-10) (2014), pp. 301315.

[37] M. Olsson and L. Fuchs , Large eddy simulations of a forced semiconfined circular impinging jet, Phys. Fluids, 10(2) (1998), pp. 476486.

[38] P. R. Voke and S. Gao , Numerical study of heat transfer from an impinging jet, Int. J. Heat Mass Transfer, 41(4-5) (1998), pp. 671680.

[39] T. Cziesla , G. Biswas , H. Chattopadhyay and N. K. Mitra , Large-eddy simulation of flow and heat transfer in an impinging slot jet, Int. J. Heat Fluid Flow, 22(5) (2001), pp. 500508.

[40] M. Tsubokura , T. Kobayashi , N. Taniguchi and W. P. Jones , A numerical study on the eddy structures of impinging jets excited at the inlet, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 500511.

[41] F. Beaubert and S. Viazzo , Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 512519.

[43] Z. Q. Yin and J. Z. Lin , Numerical simulation of the formation of nanoparticles in an impinging twin-jet, J. Hydrodyn. Ser. B, 19(5) (2007), pp. 533541.

[44] J. Y. Fan , Y. Zhang and D. Z. Wang , Large-eddy simulation of three domensional vortical structures for an impinging transverse jet in the near region, J. Hydrodyn. Ser. B, 19(3) (2007), pp. 314321.

[45] M. Popovac and K. Hanjalic , Large-eddy simulations of flow over a jet-impinged wall-mounted cube in a cross stream, Int. J. Heat Fluid Flow, 28 (2007), pp. 13601378.

[47] N. Uddin , S. O. Neumann , B. Weigand and B. A. Younis , Large-eddy simulations and heat-flux modeling in a turbulent impinging jet, Numer. Heat Transfer Part A, 55 (2009), pp. 906930.

[50] M. Germano , U. Piomelli , P. Moin and W. Cabot , A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3(7) (1991), pp. 17601765.

[51] G. Lodato , L. Vervisch and P. Domingo , A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, 21 (2009), 0351023.

[52] A. Dewan , R. Dutta and B. Srinivasan , Recent trends in computation of turbulent jet impingement heat transfer, Heat Transfer Eng., 33(4-5) (2012), pp. 447460.

[54] T. Dairay , V. Fortun , E. Lamballais and L. E. Brizzi , LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow 50 (2014), pp. 177187.

[55] W. Wu and U. Piomelli , Large-eddy simulation of impinging jets with embedded azimuthal vortices, J. Turbulence, 16(1) (2015), pp. 4466.

[57] U. Piomelli and J. H. Liu , Large-eddy simulation of rotating channel flows using a locallized dynamic-model, Phys. Fluids, 7(4) (1995), pp. 839848.

[58] N. N. Smirnov , V. B. Betelin , R. M. Shagaliev , V. F. Nikitin , I. M. Belyakov , Yu. N. Deryuguin , S. V. Aksenov and D. A. Korchazhkin , Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39 (2014), pp. 1074810756.

[59] V. B. Betelin , R. M. Shagaliev , S. V. Aksenov , I. M. Belyakov , Yu. N. Deryuguin , D. A. Korchazhkin , A. S. Kozelkov , V. F. Nikitin , A. V. Sarazov and D. K. Zelenskiy , Mathematical simulation of hydrogen-Coxygen combustion in rocket engines using LOGOS code, Acta Astronautica, 96 (2014), pp. 5364.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2017 - 19th August 2017. This data will be updated every 24 hours.