[1]
Eckeret, E. R. G. and Drake, R. M., Analysis of Heat and Mass Transfer, McGraw Hill, Newyark, 1972.

[2]
Bejan, A., Convection Heat Transfer, Newyork: John Wiley, 1984.

[3]
Dursunkaya, Z. and Worek, W. M., Diffusion-thermo and thermal diffusion effects in transient and steady natural convection from a vertical surface, Int. J. Heat. Mass. Trans., 35 (1992), pp. 2060–2065.

[4]
Kafoussias, N. G. and Williams, N. G., Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity, Int. J. Eng. Sci., 33 (1995), pp. 1369–1384.

[5]
Postelnicu, A., Influence of a magnetic field on heat and mass transfer by natural convection from vertical sufaces in porous media considering Soret and Dufour effects, Int. J. Heat. Mass. Trans., 47 (2004), pp. 1467–1475.

[6]
Abreu, C. R. A., Alfradique, M. F. and Silva, A. T., Boundary layer flows with Dufour and Soret effects: I: forced and natural convection, Chem. Eng. Sci., 61 (2006), pp. 4282–4289.

[7]
Alam, M. S. and Rahman, M. M., Dufour and Soret effects on mixed convection flow past a vertical porous flat plate with variable suction, Nonlinear. Anal. Model. Contr., 11 (2006), pp. 3–12.

[8]
Narayana, P. A. Lakshmi and Murthy, P. V. S. N., Soret and Dufour effects in a doubly stratified Darcy porous medium, J. Porous. Media., 10 (2007), pp. 613–624.

[9]
Eringen, A. C., Theory of micropolar fluids, J. Math. Mech., 16 (1966), pp. 1–18.

[10]
Lukaszewicz, G., Micropolar Fluids-Theory and Applications, Birkhauser, Basel, 1999.

[11]
Ahmadi, G., Self-similar solution of incompressible micropolar boundary layer flow over a semiinfinite plate, Int. J. Eng. Sci., 14 (1976), pp. 639–646.

[12]
Jena, S. K. and Mathur, M. N., Mixed convection flow of a micropolar fluid from an isothermal vertical plate, Comput. Math. Appl., 10 (1984), pp. 291–304.

[13]
Gorla, R. S. R., Lin, P. P. and Yang, An-Jen, Asymptotic boundary layer solutions for mixed convection from a vertical surface in a micropolar fluid, Int. J. Eng. Sci., 28 (1990), pp. 525–533.

[14]
Wang, T.-Y., The coupling of conduction with mixed convection of micropolar fluids past a vertical flat plate, Int. Commun. Heat. Mass. Trans., 25 (1998), pp. 1075–1084.

[15]
Beg, O. A., Bhargava, R., Rawat, S. and Kahya, E., Numerical study of micropolar con-vective heat and mass transfer in a non-Darcy porous regime with Soret and Dufour effects, EJER., 13 (2008), pp. 51–66.

[16]
Rawat, S. and Bhargava, R., Finite element study of natural convection heat and mass transfer in a micropolar fluid saturated porous regime with Soret/Dufour effects, Int. J. Appl. Math. Mech., 5 (2009), pp. 58–71.

[17]
Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, Springer-Verlin, 1984.

[18]
Na, T. Y., Computational Mehtods in Engineering Boundary Value Problems, Academic Press, Newyork
1979.

[19]
Alabraba, M. A., Bestman, A. R. and Ogulu, A., Laminar convection in binary mixture of hydromagnetic flow with radiative heat transfer-I, Astrophys. Space. Sci., 195 (1992), pp. 431–439.

[20]
Cowin, S. C., Polar fluids, Phys. Fluids., 11 (1968), pp. 1919–1927.

[21]
Kafoussias, N. G., Local similarity Solution for combined free-forced convective and mass transfer flow past a semi-infinite vertical plate, Int. J. Energy. Res., 14 (1990), pp. 305–309.

[22]
Keller, H. B., Numerical methods in boundary-layer theory, Annu. Rev. Fluid. Mech., 10 (1978), pp. 417–433.

[23]
Kumari, M., Takhar, H. S. and Nath, G., Flow and heat transfer of a viscoelastic fluid over a flat plate with magnetic field and a presure gradient, Ind. J. Pure. Appl. Math., 28 (1997), pp. 109–121.

[24]
Ishak, A., Nazar, Roslinda and Pop, I., Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium, Int. J. Heat. Mass. Trans., 51 (2008), pp. 3693–3695.

[25]
Bachok, N., Ishak, A. and Pop, I., Mixed convection boundary layer flow near the stagnation point on a vertical surface embedded in a porous medium with anisotropy effect, Trans. Porous. Media., 82 (2010), pp. 363–373.