This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
H. Zhang , G.M. Wei and Y. T. Gao , On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics, Czechoslovak J. Phys., 52(3) (2002), pp. 373–377.

[3]
D. Furihata and T. Matsuo , Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, CRC Press, London, 2010.

[6]
S. Koide and D. Furihata , Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Japan J. Indus. Appl. Math., 26(1) (2009), pp. 15–40.

[7]
T. Matsuo and D. Furihata , Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171(2) (2001), pp. 425–447.

[8]
T. Yaguchi , T. Matsuo and M. Sugihara , An extension of the discrete variational method to nonuniform grids, J. Comput. Phys., 229(11) (2010), pp. 4382–4423.

[11]
R. E. Bank and D. J. Rose , Some error estimates for the box methods, SIAM J. Numer. Anal., 24(4) (1987), pp. 777–787.

[12]
W. Hackbusch , On first and second order box schemes, Computing, 41(4) (1989), pp. 277–296.

[13]
R. H. Li , Z. Y. Chen and W. Wu , Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker Inc., New York, 2000.

[15]
Q. X. Wang , Z. Y. Zhang , X. H. Zhang and Q. Y. Zhu , Energy-preserving finite volume element method for the improved Boussinesq equation, J. Comput. Phys., 270 (2014), pp. 58–69.

[16]
Z. Y. Zhang , Error estimates of finite volume element method for the pollution in groundwater flow, Numer. Methods Partial Differential Equations, 25(2) (2009), pp. 259–274.

[17]
J. C. Xu and Q. S. Zou , Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numerische Mathematik, 111(3) (2009), pp. 469–492.

[18]
Z. Y. Zhang and F. Q. Lu , Quadratic finite volume element method for the improved Boussinesq equation, J. Math. Phys., 53(1) (2012), 013505.

[19]
D. Dutykh , D. Clamond , P. Milewski and D. Mitsotakis , Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, Euro. J. Appl.Math., 24(5) (2013), pp. 761–787.

[20]
D. Dutykh , TH. Katsaounis and D. Mitsotakis , Finite volume methods for unidirectional dispersive wave models, Int. J. Numer. Methods Fluids, 71(6) (2013), pp. 717–736.

[21]
S. Li and L. Vu-Quoc , Finite difference calculas invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32(6) (1995), pp. 1839–1875.

[23]
A. K. Khalifa , K. R. Raslan and H. M. Alzubaidi , A collocation method with cubic B-splines for solving the MRLW equation, J. Comput. Appl. Math., 212(2) (2008), pp. 406–418.

[25]
K. R. Raslan , Numerical study of the modified regularized long wave equation, Chaos, Solitons and Fractals, 42(3) (2009), pp. 1845–1853.

[26]
J. X. Cai , A multisymplectic explicit scheme for the modified regularized long-wave equation, J. Comput. Appl. Math., 234(3) (2010), pp. 899–905.

[27]
M. A. Johnson , On the stability of periodic solutions of the generalized Benjamin-Bona-Mahony equation, Physica D: Nonlinear Phenomena, 239(19) (2010), pp. 1892–1908.

[28]
P. J. Olver , Euler operators and conservation laws of the BBM equation, Mathematical Proceedings of the Cambridge Philosophical Society, 85(1) (1979), pp. 143–160.

[29]
N. Yi , Y. Huang and H. Liu , A direct discontinuous Galerkin method for the generallized Korteweg-de Vries equation: energy conservation and boundary effect, J. Comput. Phys., 242 (2013), pp. 351–366.

[30]
M. Dahlby and O. Brynjulf , A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33(5) (2011), pp. 2318–2340.

[31]
Y. Z. Gong , J. X. Cai and Y. S. Wang , Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys., 279 (2014), pp. 80–102.

[32]
H. C. Li , J. Q. Sun and M. Z. Qin , Multi-symplectic method for the Zakharov-Kuznetsov equation, Adv. Appl. Math. Mech., 7(1) (2015), pp. 58–73.