[1]
Zhang H., Wei G.M. and Gao Y. T., On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics, Czechoslovak J. Phys., 52(3) (2002), pp. 373–377.

[2]
Karakoc S. B. G., Geyikli T. and Bashan A., A numerical solution of the modified regularized long wave (MRLW) equation using quartic B-splines, TWMS J. Eng. Math., 3(2) (2013), pp. 231–244.

[3]
Furihata D. and Matsuo T., Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, CRC Press, London, 2010.

[4]
Furihata D. and Mori M., A stable finite difference scheme for the Cahn-Hilliard equation based on a Lyapunov functional, J. Appl. Math. Mech., 76(1) (1996), pp. 405–406.

[5]
Durán A. and López-Marcos M. A., Conservative numerical methods for solitary wave interactions, J. Phys. A. Math. Theor., 36(28) (2003), pp. 7761–7770.

[6]
Koide S. and Furihata D., Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Japan J. Indus. Appl. Math., 26(1) (2009), pp. 15–40.

[7]
Matsuo T. and Furihata D., Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171(2) (2001), pp. 425–447.

[8]
Yaguchi T., Matsuo T. and Sugihara M., An extension of the discrete variational method to nonuniform grids, J. Comput. Phys., 229(11) (2010), pp. 4382–4423.

[9]
Matsuo T. and Kuramae H., An alternating discrete variational derivative method, AIP Conference Proceedings, 1479(1) (2012), pp. 1260–1263.

[10]
Kuramae H. and Matsuo T., An alternating discrete variational derivative method for coupled partial differential equations, Japan Soc. Indus. Appl. Math. Lett., 4 (2012), pp. 29–32.

[11]
Bank R. E. and Rose D. J., Some error estimates for the box methods, SIAM J. Numer. Anal., 24(4) (1987), pp. 777–787.

[12]
Hackbusch W., On first and second order box schemes, Computing, 41(4) (1989), pp. 277–296.

[13]
Li R. H., Chen Z. Y. and Wu W., Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker Inc., New York, 2000.

[14]
Li Y. and Li R. H., Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 17(6) (1999), pp. 653–672.

[15]
Wang Q. X., Zhang Z. Y., Zhang X. H. and Zhu Q. Y., Energy-preserving finite volume element method for the improved Boussinesq equation, J. Comput. Phys., 270 (2014), pp. 58–69.

[16]
Zhang Z. Y., Error estimates of finite volume element method for the pollution in groundwater flow, Numer. Methods Partial Differential Equations, 25(2) (2009), pp. 259–274.

[17]
Xu J. C. and Zou Q. S., Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numerische Mathematik, 111(3) (2009), pp. 469–492.

[18]
Zhang Z. Y. and Lu F. Q., Quadratic finite volume element method for the improved Boussinesq equation, J. Math. Phys., 53(1) (2012), 013505.

[19]
Dutykh D., Clamond D., Milewski P. and Mitsotakis D., Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, Euro. J. Appl.Math., 24(5) (2013), pp. 761–787.

[20]
Dutykh D., Katsaounis TH. and Mitsotakis D., Finite volume methods for unidirectional dispersive wave models, Int. J. Numer. Methods Fluids, 71(6) (2013), pp. 717–736.

[21]
Li S. and Vu-Quoc L., Finite difference calculas invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32(6) (1995), pp. 1839–1875.

[22]
Gardner L. R. T., Gardner G. A., Ayoub F. A. and Amein N. K., Approximations of solitary waves of the MRLW equation by B-spline finite element, Arabian J. Sci. Eng. A Sci., 22(2) (1997), pp. 183–193.

[23]
Khalifa A. K., Raslan K. R. and Alzubaidi H. M., A collocation method with cubic B-splines for solving the MRLW equation, J. Comput. Appl. Math., 212(2) (2008), pp. 406–418.

[24]
Khalifa A. K., Raslan K. R. and Alzubaidi H. M., A finite difference scheme for the MRLW and solitary wave interactions, Appl. Math. Comput., 189(1) (2007), pp. 346–354.

[25]
Raslan K. R., Numerical study of the modified regularized long wave equation, Chaos, Solitons and Fractals, 42(3) (2009), pp. 1845–1853.

[26]
Cai J. X., A multisymplectic explicit scheme for the modified regularized long-wave equation, J. Comput. Appl. Math., 234(3) (2010), pp. 899–905.

[27]
Johnson M. A., On the stability of periodic solutions of the generalized Benjamin-Bona-Mahony equation, Physica D: Nonlinear Phenomena, 239(19) (2010), pp. 1892–1908.

[28]
Olver P. J., Euler operators and conservation laws of the BBM equation, Mathematical Proceedings of the Cambridge Philosophical Society, 85(1) (1979), pp. 143–160.

[29]
Yi N., Huang Y. and Liu H., A direct discontinuous Galerkin method for the generallized Korteweg-de Vries equation: energy conservation and boundary effect, J. Comput. Phys., 242 (2013), pp. 351–366.

[30]
Dahlby M. and Brynjulf O., A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33(5) (2011), pp. 2318–2340.

[31]
Gong Y. Z., Cai J. X. and Wang Y. S., Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys., 279 (2014), pp. 80–102.

[32]
Li H. C., Sun J. Q. and Qin M. Z., Multi-symplectic method for the Zakharov-Kuznetsov equation, Adv. Appl. Math. Mech., 7(1) (2015), pp. 58–73.