This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
B. Baeumer , M. Kovcs and H. Sankaranarayanan , Higher order Grünwald approximations of fractional derivatives and fractional powers of operators, Trans. Amer. Math. Soc., 367 (2015), pp. 813–834.

[2]
D. A. Benson , S. W. Wheatcraft and M. M. Meerschaert , The fractional-order governing equation of Lévy motion, Water Resour. Res., 36 (2000), pp. 1413–1423.

[3]
C. ÇElik and M. Duman , Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), pp. 1743–1750.

[4]
T. F. Chan , Stability analysis of finite difference schemes for the advection-diffusion equation, SIAM J. Numer. Anal., 21 (1984), pp. 272–284.

[5]
M. H. Chen , W. H. Deng and Y. J. Wu , Superlinearly convergent algorithms for the two dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. Math., 70 (2013), pp. 22–41.

[6]
Z. Q. Deng , V. P. Singh , F. Asce and L. Bengtsson , Numerical solution of fractional advection-dispersion different equations, J. Hydral. Eng., 130 (2004), pp. 422–431.

[8]
B. Fornberg , Calculation of weights in finite difference formulas, SIAM Rev., 40 (1998), pp. 685–691.

[10]
F. Liu , V. Ahn and I. Turner , Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), pp. 209–219.

[11]
Ch. Lubich , Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704–719.

[12]
V. E. Lynch , B. A. Carreras , D. Del-Castillo-Negrete , K. M. Ferreira-Mejias and H. R. Hicks , Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192 (2003), pp. 406–421.

[13]
M. M. Meerschaert and C. Tadjeran , Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65–77.

[14]
M. M. Meerschaert , H.-P. Scheffler and C. Tadjeran , Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211 (2006), pp. 249–261.

[15]
M. M. Meerschaert and C. Tadjeran , Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), pp. 80–90.

[16]
R. Metzler and J. Klafter , The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A Math. General, 37 (2004), pp. 161–208.

[17]
R. Metzler and J. Klafter , The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1–77.

[19]
M. D. Ortigueira , Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006 (2006), pp. 1–12.

[20]
H.-K. Pang and H. W. Sun , Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), pp. 693–703.

[21]
D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3 (1959), pp. 28–41.

[23]
J. Song , Q. Yu , F. Liu and I. Turner , A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation, Numer. Algorithms, 66 (2014), pp. 911–932.

[24]
E. Sousa , Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228 (2009), pp. 4038–4054.

[25]
E. Sousa and C. Li , A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), pp. 22–37.

[26]
J. C. Strikwerda , Finite Difference Schemes and Partial Differential Equations, SIAM, 2004.

[27]
Z. Z. Sun , Numerical Methods of Partial Differential Equations (in Chinese), Science Press, Beijing, 2005.

[29]
V. K. Tuan and R. Gorenflo , Extrapolation to the limit for numerical fractional differentiation, Z. Angew. Math. Mech., 75 (1995), pp. 646–648.

[30]
W. Y. Tian , H. Zhou and W. H. Deng , A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), pp. 1703–1727.

[31]
D. L. Wang , A. G. Xiao and W. Yang , Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242 (2013), pp. 670–681.

[32]
H. Wang , K. Wang and T. Sircar , A direct Nlog2N finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010), pp. 8095–8104.