Skip to main content Accessibility help
×
Home

Numerical Analysis of Damage Thermo-Mechanical Models

  • Hamdi Hentati (a1), Ilyes Ben Naceur (a2), Wassila Bouzid (a2) and Aref Maalej (a1)

Abstract

In this paper, we present numerical computational methods for solving the fracture problem in brittle and ductile materials with no prior knowledge of the topology of crack path. Moreover, these methods are capable of modeling the crack initiation. We perform numerical simulations of pieces of brittle material based on global approach and taken into account the thermal effect in crack propagation. On the other hand, we propose also a numerical method for solving the fracture problem in a ductile material based on elements deletion method and also using thermo-mechanical behavior and damage laws. In order to achieve the last purpose, we simulate the orthogonal cutting process.

Copyright

Corresponding author

*Corresponding author. Email: hamdi.hentati@yahoo.fr (H. Hentati)

References

Hide All
[1]Griffith, A., The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London, 221 (1921), pp. 163198.
[2]Bourdin, B., The Variational Approach to Fracture, PhD thesis, University Paris 13, 1998.
[3]Francfort, G. and Marigo, J. J., Vers une théorie énergétique de la rupture fragile, Comptes Rendus Mécanique, 330 (2002), pp. 225233.
[4]Bourdin, B., Francfort, G. and Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48(4) (2000), pp. 797826.
[5]Bourdin, B., Francfort, G. and Marigo, J. J., The variational approach to fracture, J. Elasticity, 91 (2008), pp. 5148.
[6]Johnson, G. R. and Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rate, and temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, pp. 541547, 1983.
[7]Kim, K. W., Lee, W. Y. and Sin, H. C., A finite element analysis of machining with the tool edge considered, J. Mater. Process. Tech., 86 (1999), pp. 4555.
[8]Ozel, T. and Zeren, E., Fe modelling of stresses induced by high speed machining with round cutting tools, 2005.
[9]Ozel, T. and Zeren, E., A methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining, J. Manufact. Sci. Eng., 128 (2006), pp. 119129.
[10]Ozel, T., Modelling of hard machining: effect of insert edge preparation in cbn cutting tools, J. Mater. Process. Tech., 141 (2003), pp. 284293.
[11]Fassi, H., Bousshine, L., Chaaba, A. and Elharif, A., Numerical simulation of orthogonal cutting by incremental elastoplastic analysis and finite element method, J. Mater. Process. Tech., 141 (2003), pp. 181188.
[12]Alcaraz, J. L., Lorenzo, I. and Lacalle, L. N., Thermomechanical analysis of a chip machining process, in: ABAQUS Users’ Conference, 2003.
[13]Bil, H., Kilic, S. E. and Tekkaya, A. E., A comparison of orthogonal cutting data from experiments with three different finite element models, Int. J. Machine. Tools Manufacture, 44 (2004), pp. 933944.
[14]Barge, M., Hamdi, H., Rech, J. and Bergheau, J. M., Numerical modelling of orthogonal cutting: influence of numerical parameters, J. Mater. Process. Tech., 164-165 (2005), pp. 11481153.
[15]Francfort, G. and Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), pp. 13191342.
[16]Oleaga, G. E., On the path of a quasi static crack in mode iii, J. Elasticity, 76 (2004), pp. 163189.
[17]Amor, H., Marigo, J. J. and Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57 (2009), pp. 12091229.
[18]Pham, K. and Marigo, J. J., Approche variationnelle de l’endommagement: I. les. concepts fondamentaux, Comptes Rendus Mécanique, 338 (2010), pp. 191198.
[19]Pham, K. and Marigo, J. J., Approche variationnelle de l’endommagement: Ii. les modèles à gradient, Comptes Rendus Mécanique, 338 (2010), pp. 199206.
[20]Buliga, M., Energy minimizing brittle crack propagation, J. Elasticity, 52(3) (1998), pp. 201238.
[21]Charlotte, M., Francfort, G., Marigo, J. J. and Truskinovski, L., Revisiting brittle fracture as an energy minimization problem comparisons of griffith and barenblatt surface energy models, In: Symposium on Continuous Damage and Fracture, 2000.
[22]Ambrosio, L. and Tortorelli, V. M., Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence, In: Commun. Pure Appl. Math., 43 (1990), pp. 9991036.
[23]Ambrosio, L. and Tortorelli, V. M., On the approximation of free discontinuity problems, In: Boll. Un. Mat. Ital., B(7)6(1) (1992), pp. 105123.
[24]Mumford, D. and Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, In: Commun. Pure Appl. Math., XLII (1989), pp. 577685.
[25]Jagla, E., Stable propagation of an ordered array of cracks during directional drying, Phys. Rev. E, 2002.
[26]Jenkins, D., Optimal spacing and penetration of cracks in a shrinking slab, Phys. Rev. E, 2005.
[27]Jiang, C. P., Wua, X. F., Li, J., Song, F., Shao, Y. F., Xu, X. H. and Yan, P., A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock, Acta Mater., 60 (2012), pp. 45404550.
[28]Bourdin, B., Maurini, C. and Knepley, M., Numerical simulation of reservoir stimulation-a variational approach, In: PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31-February 2, 2011.
[29]Gurson, A., Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech., 99 (1977), pp. 215.
[30]Tvergaard, V. and Needleman, A., Analysis of cup cone fracture in a round tensile bar, Acta Metall., 32 (1984), pp. 157169.
[31]Lemaitre, J., Course on Damage Mechanics, Springer, Second Edition, 1991.
[32]Lemiale, V., Meunier, S. and Picart, P., Etude experimentale et numerique du decoupage de toles en faible epaisseur, XV Congres de Mecanique, Nancy, Sept 2001, pp. 440.
[33]Umbrello, D., M’Saooubi, R. and Outeiro, J. C., The influence of johnson-cook material constants on finite element simulation of machining of aisi 316l steel, Int. J. Mach. Tool Manufacture, 47 (2007), pp. 462470.
[34]Guo, NY. B., A fem study on mechanisms of discontinuous chip formation in hard machining, J. Mater. Process. Tech., 155-156 (2004), pp. 13501356.
[35]Lestriez, P., Modlisation Numerique du Couplage Thermo Mcanique Endommagement en Transformation Finies, Application la Mise en Forme, PhD thesis, 2003.
[36]Poizat, C., Campagna, L., Daridon, L., Ahzi, S., Husson, C. and Merle, L., Modeling and simulation of thin sheet blanking using damage and rupture criteria, Int. J. Form. Process., 8(1) (2005), pp. 2947.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed