[1]Griffith, A., The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London, 221 (1921), pp. 163–198.

[2]Bourdin, B., The Variational Approach to Fracture, PhD thesis, University Paris 13, 1998.

[3]Francfort, G. and Marigo, J. J., Vers une théorie énergétique de la rupture fragile, Comptes Rendus Mécanique, 330 (2002), pp. 225–233.

[4]Bourdin, B., Francfort, G. and Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48(4) (2000), pp. 797–826.

[5]Bourdin, B., Francfort, G. and Marigo, J. J., The variational approach to fracture, J. Elasticity, 91 (2008), pp. 5–148.

[6]Johnson, G. R. and Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rate, and temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, pp. 541–547, 1983.

[7]Kim, K. W., Lee, W. Y. and Sin, H. C., A finite element analysis of machining with the tool edge considered, J. Mater. Process. Tech., 86 (1999), pp. 45–55.

[8]Ozel, T. and Zeren, E., Fe modelling of stresses induced by high speed machining with round cutting tools, 2005.

[9]Ozel, T. and Zeren, E., A methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining, J. Manufact. Sci. Eng., 128 (2006), pp. 119–129.

[10]Ozel, T., Modelling of hard machining: effect of insert edge preparation in cbn cutting tools, J. Mater. Process. Tech., 141 (2003), pp. 284–293.

[11]Fassi, H., Bousshine, L., Chaaba, A. and Elharif, A., Numerical simulation of orthogonal cutting by incremental elastoplastic analysis and finite element method, J. Mater. Process. Tech., 141 (2003), pp. 181–188.

[12]Alcaraz, J. L., Lorenzo, I. and Lacalle, L. N., Thermomechanical analysis of a chip machining process, in: ABAQUS Users’ Conference, 2003.

[13]Bil, H., Kilic, S. E. and Tekkaya, A. E., A comparison of orthogonal cutting data from experiments with three different finite element models, Int. J. Machine. Tools Manufacture, 44 (2004), pp. 933–944.

[14]Barge, M., Hamdi, H., Rech, J. and Bergheau, J. M., Numerical modelling of orthogonal cutting: influence of numerical parameters, J. Mater. Process. Tech., 164-165 (2005), pp. 1148–1153.

[15]Francfort, G. and Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), pp. 1319–1342.

[16]Oleaga, G. E., On the path of a quasi static crack in mode iii, J. Elasticity, 76 (2004), pp. 163–189.

[17]Amor, H., Marigo, J. J. and Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57 (2009), pp. 1209–1229.

[18]Pham, K. and Marigo, J. J., Approche variationnelle de l’endommagement: I. les. concepts fondamentaux, Comptes Rendus Mécanique, 338 (2010), pp. 191–198.

[19]Pham, K. and Marigo, J. J., Approche variationnelle de l’endommagement: Ii. les modèles à gradient, Comptes Rendus Mécanique, 338 (2010), pp. 199–206.

[20]Buliga, M., Energy minimizing brittle crack propagation, J. Elasticity, 52(3) (1998), pp. 201–238.

[21]Charlotte, M., Francfort, G., Marigo, J. J. and Truskinovski, L., Revisiting brittle fracture as an energy minimization problem comparisons of griffith and barenblatt surface energy models, In: Symposium on Continuous Damage and Fracture, 2000.

[22]Ambrosio, L. and Tortorelli, V. M., Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence, In: Commun. Pure Appl. Math., 43 (1990), pp. 999–1036.

[23]Ambrosio, L. and Tortorelli, V. M., On the approximation of free discontinuity problems, In: Boll. Un. Mat. Ital., B(7)6(1) (1992), pp. 105–123.

[24]Mumford, D. and Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, In: Commun. Pure Appl. Math., XLII (1989), pp. 577–685.

[25]Jagla, E., Stable propagation of an ordered array of cracks during directional drying, Phys. Rev. E, 2002.

[26]Jenkins, D., Optimal spacing and penetration of cracks in a shrinking slab, Phys. Rev. E, 2005.

[27]Jiang, C. P., Wua, X. F., Li, J., Song, F., Shao, Y. F., Xu, X. H. and Yan, P., A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock, Acta Mater., 60 (2012), pp. 4540–4550.

[28]Bourdin, B., Maurini, C. and Knepley, M., Numerical simulation of reservoir stimulation-a variational approach, In: PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31-February 2, 2011.

[29]Gurson, A., Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech., 99 (1977), pp. 2–15.

[30]Tvergaard, V. and Needleman, A., Analysis of cup cone fracture in a round tensile bar, Acta Metall., 32 (1984), pp. 157–169.

[31]Lemaitre, J., Course on Damage Mechanics, Springer, Second Edition, 1991.

[32]Lemiale, V., Meunier, S. and Picart, P., Etude experimentale et numerique du decoupage de toles en faible epaisseur, XV Congres de Mecanique, Nancy, Sept 2001, pp. 440.

[33]Umbrello, D., M’Saooubi, R. and Outeiro, J. C., The influence of johnson-cook material constants on finite element simulation of machining of aisi 316l steel, Int. J. Mach. Tool Manufacture, 47 (2007), pp. 462–470.

[34]Guo, NY. B., A fem study on mechanisms of discontinuous chip formation in hard machining, J. Mater. Process. Tech., 155-156 (2004), pp. 1350–1356.

[35]Lestriez, P., Modlisation Numerique du Couplage Thermo Mcanique Endommagement en Transformation Finies, Application la Mise en Forme, PhD thesis, 2003.

[36]Poizat, C., Campagna, L., Daridon, L., Ahzi, S., Husson, C. and Merle, L., Modeling and simulation of thin sheet blanking using damage and rupture criteria, Int. J. Form. Process., 8(1) (2005), pp. 29–47.