This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
R. C. Ackerberg , The viscous incompressible flow inside a cone, J. Fluid Mech., 21 (1971), pp. 47–81.

[2]
F. M. Ali , R. Nazar , N. M. Arfin and I. Pop , MHD stagnation point flow and heat transfer towards stretching sheet with induced magnetic field, Appl. Math. Mech., 32 (2011), pp. 409–418.

[4]
M. Ashraf , S. Asghar and M. A. Hossain , Computational study of combined effects of conduction-radiation and hydromagnetics on natural convection flow past magnetized permeable plate, Appl. Math. Mech., 33 (2012), pp. 731–750.

[5]
M. Ashraf , S. Asghar and M. A. Hossain , Fluctuating hydromagnetic natural convection flow past a magnetized vertical surface in the presence of thermal radiation, Thermal Sci. J., 16 (2012), pp. 1081–1096.

[6]
M. Ashraf , U. Ahmad , M. Ahmad and N. Sultana , Computational study of mixed convection flow with algebraic decay of mainstream velocity in the presence of applied magnetic field, J. Appl. Mech. Eng., 4 (2015), 175. doi: 10.4172/2168-9873.1000175.

[9]
J. Buckmaster , Separation and magnetohydrodynamics, J. Fluid Mech., 38 (1969), pp. 481–498.

[10]
S. S. Chawla , Fluctuating boundary layer on a magnetized plate, Proc. Comb. Phil. Soc., 63 (1967), 513.

[11]
J. F. Clarke , Transpiration and natural convection the vertical plate problem, J. Fluid Mech., 57 (1973), pp. 45–61.

[12]
J. F. Clarke and N. Riley , Natural convection induced in a gas by the presence of a hot porous horizontal surface, Quart. J. Mech. Appl. Math., 28 (1975), pp. 373–396.

[13]
T. V. Davies , The magnetohydrodynamic boundary layer in two-dimensional steady flow past a semi-infinite flat plate, Part I, Uniform conditions at infinity, Proceeding of the Royal Society of London Series A, 273 (1963), pp. 496–507.

[14]
T. V. Davies , The magnetohydrodynamic boundary layer in two-dimensional steady flow past a semi-infinite flat plate, Part III, Influence of adverse magneto-dynamic pressure gradient, Proceeding of the Royal Society of London Series A, 273 (1963), pp. 518–537.

[19]
A. S. Gupta , J. C. Misra and M. Reza , Magnetohydrodynamic shear flow along a flat plate with uniform suction or blowing, ZAMP, 56 (2005), pp. 1030–1047.

[20]
T. Hildyard , Falkner-Skan problem in magnetohydrodynamics, Phys. Fluids, 15 (1972), pp. 1023–1027.

[21]
D. B. Ingham , The magnetogasdynamic boundary layer for a thermally conducting plate, Quart. J. Mech. Appl. Math., 20 (1967), pp. 347–364.

[22]
J. H. Merkin , On solutions of the boundary-layer equations with algebraic decay, J. Fluid Mech., 88 (1978), pp. 309–321.

[23]
H. J. Merkin , The effects of blowing and suction on free convection boundary layers, Int. J. Heat Mass Transfer, 18 (1975), pp. 237–244.

[24]
G. C. Shit and R. Haldar , Effect of thermal radiation on MHD viscous fluid flow and heat transfer over non linear shirking porous plate, Appl. Math. Mech., 32 (2011), pp. 677–688.

[25]
E. M. Sparrow and R. D. Cess , Free convection with blowing or suction, J. Heat Transfer, 83 (1961), pp. 387–396.

[26]
X. H. Su and L. C. Zheng , Approximate solution to MHD Falkner-Skan flow over permeable wall, Appl. Math. Mech., 32 (2011), pp. 401–408.

[27]
C. W. Tan and C. T. Wang , Heat transfer in aligned-field magnetohydrodynamic flow past a flat plate, Int. J. Heat Mass Transfer, 11 (1967), pp. 319–329.

[28]
M. J. Uddin , A. Waqar Khan and I. A. Ismail , MHD free convection boundary layer flow of nanofluid past a flat vertical plate with newtonian heating boundary conditions, Plos One, 7 (2012), 49499.

[29]
M. Vedhanayagam , R. A. Altenkrich and R. Eichhorn , A transformation of the boundary layer equations for free convection past a vertical flat plate with arbitrary blowing and wall temperature variations, Int. J. Heat Mass Transfer, 23 (1980), pp. 1286–1288.

[30]
J. Zueco and S. Ahmed , Combined heat and mass transfer by convection MHD flow along a porous plate with chemical reaction in presence of heat source, Appl. Math. Mech., 31 (2010), pp. 1217–1230.