Skip to main content
×
Home
    • Aa
    • Aa

Numerical Study of Geometric Multigrid Methods on CPU-GPU Heterogeneous Computers

  • Chunsheng Feng (a1), Shi Shu (a2), Jinchao Xu (a3) and Chen-Song Zhang (a4)
Abstract
Abstract

The geometric multigrid method (GMG) is one of the most efficient solving techniques for discrete algebraic systems arising from elliptic partial differential equations. GMG utilizes a hierarchy of grids or discretizations and reduces the error at a number of frequencies simultaneously. Graphics processing units (GPUs) have recently burst onto the scientific computing scene as a technology that has yielded substantial performance and energy-efficiency improvements. A central challenge in implementing GMG on GPUs, though, is that computational work on coarse levels cannot fully utilize the capacity of a GPU. In this work, we perform numerical studies of GMG on CPU-GPU heterogeneous computers. Furthermore, we compare our implementation with an efficient CPU implementation of GMG and with the most popular fast Poisson solver, Fast Fourier Transform, in the cuFFT library developed by NVIDIA.

Copyright
Corresponding author
Email: spring@xtu.edu.cn
Corresponding author. Email: shushi@xtu.edu.cn
Email: xu@math.psu.edu
Email: zhangcs@lsec.cc.ac.cn
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] J. D. Bakos , High-performance heterogeneous computing with the convey HC-1, Comput. Sci. Eng., 12(6) (2010), pp. 8087.

[3] S. Barrachina , M. Castillo , F. D. Igual , R. Mayo , E. S. Quintana-Ort I , and G. Quintana-Ort I , Exploiting the capabilities of modern GPUs for dense matrix computations, Concurrency Comput. Practice Experience, 21(18) (2009), pp. 24572477.

[6] N. Bell and M. Garland , Implementing sparse matrix-vector multiplication on throughput-oriented processors, Proceedings of the Conference on High Performance Computing Networking Storage and Analysis SC 09, (1) (2009), pp. 1.

[8] P. E. Bjø Rstad , F. Manne , T. SøRevik , and M. Vajtersic , Efficient matrix multiplication on SIMD computers, SIAM J. Matrix Ana l. Appl., 13(1) (1992), pp. 386401.

[9] J. Bolz , I. Farmer , and E. Grinspun , Sparse matrix solvers on the GPU: conjugate gradients and multigrid, ACM Trans. Graphics, 22 (2003), pp. 917924.

[14] W. L. Briggs , V. E. Henson , and S. F. Mccormick , A Multigrid Tutorial, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000.

[16] I. Buck , GPU computing: programming a massively parallel processor, International Symposium on Code Generation and Optimization (CGO’07), (2007), pp. 17.

[19] R. D. Chamberlain , M. A. Franklin , E. J. Tyson , J. Buhler , S. Gayen , P. Crowley , and J. H. Buckley , Application development on hybrid systems, In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, SC '07,50, pp. 110, New York, NY, USA, 2007, ACM.

[21] J. W. Cooley and J. W. Tukey , An algorithm for the machine calculation complex fourier series, Math. Comput., 19 (1965), pp. 297301.

[22] J. M. Elble , N. V. Sahinidis , and P. Vouzis , GPU computing with Kaczmarz’s and other iterative algorithms for linear systems, Parallel Comput., 36(5-6) (2010), pp. 215231.

[23] M. Frigo and S. G. Johnson , The design and implementation ofFFTW3, Proc. IEEE, 93(2) (2005), pp. 216231.

[32] S. Jeschke and D. Cline , A GPU Laplacian solver for diffusion curves and Poisson image editing, ACM Trans. Graphics (TOG), 28(5) (2009).

[34] D. E. Keyes , Exaflop/s: the why and the how, Comptes Rendus Mecanique, 339(2-3) (2011), pp. 7077.

[35] H. Knibbe , C. W. Oosterlee , and C. Vuik , GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid method, J. Comput. Appl. Math., 236 (2011), pp. 281293.

[36] H. Kostler , R. Schmid , U. Rüde , and C. Scheit , A parallel multigrid accelerated Poisson solver for ab initio molecular dynamics applications, Comput. Visual. Sci., 11(2) (2007), pp. 11522.

[37] R. Lord , f. Fang , f. Bervoets , and C. W. Oosterlee , A fast and accurate FFT-based method for pricing early-exercise options under Levy processes, SIAM J. Sci. Comput., 30(4) (2008), pp. 16781705.

[39] K. W. Morton AND D. F. Mayers , Numerical Solution of Partial Differential Equations, Cambridge University Press, Cambridge, second edition, 2005.

[40] J. Nickolls AND W. J. Dally , The GPU computing era, Micro IEEE, 30(2) (2010), pp. 5669.

[44] J. Shi , Y. Cai , W. Hou , L. Ma , S. X.-D. Tan , P.-H. Ho , AND X. Wang , GPU friendly fast Poisson solver for structured power grid network analysis, In Proceedings of the 46th Annual Design Automation Conference-DAC ’09, pp. 178, New York, New York, USA, 2009, ACM Press.

[45] M. Stürmer , H. Kostler , and U. Rüde , A fast full multigrid solver for applications in image processing, Numer. Linear Algebra Appl., 15 (2008), pp. 187200.

[52] J. Yang , Y. Cai , and Q. Zhou , Fast Poisson Solver preconditioned method for robust power grid analysis, In Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on, pp. 531536, 2011.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th September 2017. This data will be updated every 24 hours.