Skip to main content
    • Aa
    • Aa

Robust Semi-Discrete and Fully Discrete Hybrid Stress Finite Element Methods for Elastodynamic Problems

  • Xiaojing Xu (a1) and Xiaoping Xie (a2)

This paper analyzes semi-discrete and fully discrete hybrid stress quadrilateral finite element methods for 2-dimensional linear elastodynamic problems. The methods use a 4 node hybrid stress quadrilateral element in the space discretization. In the fully discrete scheme, an implicit second-order scheme is adopted in the time discretization. We derive optimal a priori error estimates for the two schemes and an unconditional stability result for the fully discrete scheme. Numerical experiments confirm the theoretical results.

Corresponding author
*Corresponding author. Email: (X. J. Xu), (X. P. Xie)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] C. G. Makridakis , On mixed finite element methods for linear elastodynamics, Numerische Mathematik, 61(1) (1992), pp. 235260.

[2] E. Bécache , P. Joly and C. Tsogka , A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal., 39(6) (2002), pp. 21092132.

[3] L. Boulaajine , M. Farhloul and L. Paquet , A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain I, J. Comput. Appl. Math., 231(1) (2009), pp. 447472.

[4] L. Boulaajine , M. Farhloul and L. Paquet , A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain II, J. Comput. Appl. Math., 235(5) (2011), pp. 12881310.

[5] J. J. Lai , J. G. Huang and C. M. Chen , Vibration analysis of plane elasticity problems by the C0-continuous time stepping finite element method, Appl. Numer. Math., 59(5) (2009), pp. 905919.

[6] T. J. R. Hughes and G. M. Hulbert , Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. Methods Appl. Mech. Eng., 66(3) (1988), pp. 339363.

[7] A. V. Idesman , Solution of linear elastodynamics problems with space-time finite elements on structured and unstructured meshes, Comput. Methods Appl. Mech. Eng., 196(9) (2007), pp. 17871815.

[9] T. H. H. Pian , Derivation of element stiffness matrices by assumed stress distributions, AIAA J., 2(5) (1964), pp. 13331336.

[10] T. H. H. Pian and K. Sumihara , Rational approach for assumed stress finite elements, Int. J. Numer. Methods Eng., 20(9) (1984), pp. 16851695.

[11] X. P. Xie and T. X. Zhou , Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, Int. J. Numer. Methods Eng., 59(2) (2004), pp. 293313.

[12] X. P. Xie and T. X. Zhou , Accurate 4-node quadrilateral elements with a new version of energy-compatible stress mode, Commun. Numer. Methods Eng., 24(2) (2008), pp. 125139.

[13] G. Z. Yu , X. P. Xie and C. Carstensen , Uniform convergence and a posteriori error estimation for assumed stress hybrid finite elment methods, Comput. Methods Appl. Mech. Eng., 200(29) (2011), pp. 24212433.

[14] T. X. Zhou and Y. F. Nie , Combined hybrid approach to finite element schemes of high performance, Int. J. Numer. Methods Eng., 51(2) (2001), pp. 181202.

[16] V. Thomee , Galerkin Finite element Methods for Parabolic Problems, Springer, New York, 1997.

[17] Z. M. Zhang , Analysis of some quadrilateral nonconforming elements for incompressible elasticity, SIAM J. Numer. Anal., 34(2) (1997), pp. 640663.

[18] F. Brezzi and M. Fortin , Mixed and Finite Element Method, Springer-Verlag, New York, 1991.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 136 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2017 - 19th August 2017. This data will be updated every 24 hours.