[1]
Makridakis C. G., On mixed finite element methods for linear elastodynamics, Numerische Mathematik, 61(1) (1992), pp. 235–260.

[2]
Bécache E., Joly P. and Tsogka C., A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal., 39(6) (2002), pp. 2109–2132.

[3]
Boulaajine L., Farhloul M. and Paquet L., A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain I, J. Comput. Appl. Math., 231(1) (2009), pp. 447–472.

[4]
Boulaajine L., Farhloul M. and Paquet L., A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain II, J. Comput. Appl. Math., 235(5) (2011), pp. 1288–1310.

[5]
Lai J. J., Huang J. G. and Chen C. M., Vibration analysis of plane elasticity problems by the C^{0}-continuous time stepping finite element method, Appl. Numer. Math., 59(5) (2009), pp. 905–919.

[6]
Hughes T. J. R. and Hulbert G. M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. Methods Appl. Mech. Eng., 66(3) (1988), pp. 339–363.

[7]
Idesman A. V., Solution of linear elastodynamics problems with space-time finite elements on structured and unstructured meshes, Comput. Methods Appl. Mech. Eng., 196(9) (2007), pp. 1787–1815.

[8]
Cheng L. F. and Xie X. P., The space-time noncomforming finite element analysis for the vibration model of plane elasticity, Journal of Sichuan University (Natural Science Edition, in Chinese), 49(2) (2012), pp. 258–266.

[9]
Pian T. H. H., Derivation of element stiffness matrices by assumed stress distributions, AIAA J., 2(5) (1964), pp. 1333–1336.

[10]
Pian T. H. H. and Sumihara K., Rational approach for assumed stress finite elements, Int. J. Numer. Methods Eng., 20(9) (1984), pp. 1685–1695.

[11]
Xie X. P. and Zhou T. X., Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, Int. J. Numer. Methods Eng., 59(2) (2004), pp. 293–313.

[12]
Xie X. P. and Zhou T. X., Accurate 4-node quadrilateral elements with a new version of energy-compatible stress mode, Commun. Numer. Methods Eng., 24(2) (2008), pp. 125–139.

[13]
Yu G. Z., Xie X. P. and Carstensen C., Uniform convergence and a posteriori error estimation for assumed stress hybrid finite elment methods, Comput. Methods Appl. Mech. Eng., 200(29) (2011), pp. 2421–2433.

[14]
Zhou T. X. and Nie Y. F., Combined hybrid approach to finite element schemes of high performance, Int. J. Numer. Methods Eng., 51(2) (2001), pp. 181–202.

[15]
Yu Z. Q. and Xie X. P., Semi-discrete and fully discrete hybrid stress finite element methods for elastodynamic problems, Numerical Mathematics: Theory, Methods and Applications, 8(4) (2015), pp. 582–604.

[16]
Thomee V., Galerkin Finite element Methods for Parabolic Problems, Springer, New York, 1997.

[17]
Zhang Z. M., Analysis of some quadrilateral nonconforming elements for incompressible elasticity, SIAM J. Numer. Anal., 34(2) (1997), pp. 640–663.

[18]
Brezzi F. and Fortin M., Mixed and Finite Element Method, Springer-Verlag, New York, 1991.