[1]
Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach, J. Comput. Phys., 125 (1996), pp. 150–160.

[2]
Caiden, R., Fedkiw, R. P. and Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166 (2001), pp. 1–27.

[3]
Chern, I.-L., Glimm, J., McBryan, O., Plohr, B. and Yaniv, S., Front tracking for gas dynamics, J. Comput. Phys., 62 (1986), pp. 83–110.

[4]
Cocchi, J.-P. and Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J. Comput. Phys., 137 (1997), pp. 265–298.

[5]
Cockburn, B., Hou, S. and Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54 (1990), pp. 545–581.

[6]
Cockburn, B., Lin, S.-Y. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84 (1989), pp. 90–113.

[7]
Cockburn, B. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52 (1989), pp. 411–435.

[8]
Cockburn, B. and Shu, C.-W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 25 (1991), pp. 337–361.

[9]
Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199–224.

[10]
Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175 (2002), pp. 200–224.

[11]
Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), pp. 457–492.

[12]
Glimm, J., Grove, J.W., Li, X. L., Shyue, K.-M., Zeng, Y. and Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19 (1998), pp. 703–727.

[13]
Glimm, J., Grove, J. W., Li, X. L. and Zhao, N., Simple front tracking, Contemp. Math., 238 (1999), pp. 133–149.

[14]
Glimm, J., Grove, J. W., Li, X. L., Oh, W. and Sharp, D. H., A critical analysis of Rayleigh-Taylor growth rates, J. Comput. Phys., 169 (2001), pp. 652–677.

[15]
Hao, Y. and Prosperetti, A., A numerical method for three-dimensional gas-liquid flow computations, J. Comput. Phys., 196 (2004), pp. 126–144.

[16]
Hass, J.-F. and Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181 (1987), pp. 41–76.

[17]
Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. phys., 112 (1994), pp. 31–43.

[18]
Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95 (1991), pp. 59–84.

[19]
Liu, T. G., Khoo, B. C. and Yeo, K. S., The simulation of compressible multi-medium flow I: a new methodology with test applications to 1D gas-gas and gas-water cases, Comput. Fluids, 30 (2001), pp. 291–314.

[20]
Lu, H., Zhao, N. and Wang, D., A front tracking method for the simulation of compressible multimedium flows, Commun. Comput. Phys., 19 (2016), pp. 124–142.

[21]
Mulder, W., Osher, S. and Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100 (1992), pp. 209–228.

[22]
Nourgaliev, R. R., Dinh, T. N. and Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213 (2006), pp. 500–529.

[23]
Osher, S. and Fedkiw, R. P., Level set methods: an overview and some recent results, J. Comput. Phys., 169 (2001), pp. 463–502.

[24]
Picone, J. M. and Boris, J. P., Vorticity generation by shock propagation through bubbles in a gas, J. Fluid Mech., 189 (1988), pp. 23–51.

[25]
Qiu, J., Liu, T. G. and Khoo, B. C., Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method, Commun. Comput. Phys., 3 (2008), pp. 479–504.

[26]
Quirk, J. J. and Karni, S., On the dynamics of a Shock-bubble interaction, J. Fluid Mech., 318 (1996), pp. 129–163.

[27]
Reed, W. H. and Hill, T. R., *Triangular mesh methods for the neutron transport equation*, Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.

[28]
Shu, C.-W., TVB uniformly high-order schemes for conservation laws, Math. Comput., 49 (1987), pp. 105–121.

[29]
Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[30]
Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142 (1998), pp. 208–242.

[31]
Terashima, H. and Tryggvason, G., A front tracking/ghost fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228 (2009), pp. 4012–4037.

[32]
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. and Jan, Y.-J., A front tracking method for the computations of multiphase flow, J. Comput. Phys., 169 (2001), pp. 708–759.

[33]
Wang, C. W., Liu, T. G. and Khoo, B. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28 (2006), pp. 278–302.

[34]
Zhu, J. and Qiu, J., Adaptive Runge-Kutta discontinuous Galerkin methods with modified ghost fluid method for simulating the compressible two-medium flow, J. Math. Study, 47 (2014), pp. 250–273.