Skip to main content
×
Home
    • Aa
    • Aa

A Sharp Interface Method for Compressible Multi-Phase Flows Based on the Cut Cell and Ghost Fluid Methods

  • Xiao Bai (a1) (a2) and Xiaolong Deng (a2)
Abstract
Abstract

A new sharp interface method with the combination of Ghost Fluid Method (GFM) and Cut Cell scheme is developed to study compressible multi-phase flows with clear interfaces. Straight-line cutting is applied on the cells passed by the interface. A new real-ghost mixing method is presented and applied around the cut cells to deal with very small cut cells. A cut face reconstruction method similar to volume of fluid is applied to deal with topological change problems. A high order Level Set (LS) method is applied to evolve the free interface, with the Level Set velocities from exact Riemann solver on the cut faces. Various 1D and 2D numerical examples are tested to show the robustness and ability of the present method in wide flow variable domains. This method benefits from cut cell on the sharp interface description, shows good conservation performance, and does not have the topological change difficulty of the full cut cell method presented in Chang, Deng & Theofanous, J. Comput. Phys., 242 (2013), pp. 946–990.

Copyright
Corresponding author
*Corresponding author. Email: baixiao@csrc.ac.cn (X. Bai), xiaolong.deng@csrc.ac.cn (X. L. Deng)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] C. W. Hirt and B. D. Nichols , Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39 (1981), pp. 201225.

[2] W. J. Rider and D. B. Kothe , Reconstructing volume tracking, J. Comput. Phys., 141 (1998), pp. 112152.

[3] S. Osher and J. A. Sethain , Front propagating with curvature dependent speed: algorithm based on Hamilton-Jaccobi formulation, J. Comput. Phys., 79 (1988), pp. 1249.

[4] S. Osher and R. P. Fedkiw , Level Set methods: an overview and some recent results, J. Comput. Phys., 169 (2001), pp. 463502.

[6] M. Sussman , E. Fatemi , P. Smereka , S. Osher and J. A. Sethain , An improved Level Set method for imcompressible two-phase flows, Comput. Fluids, 27 (1998), pp. 663680.

[7] D. Jacqmin , Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), pp. 96127.

[8] X. F. Yang , J. J. Feng , C. Liu and J. Shen , Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218 (2006), pp. 417428.

[9] I. L. Chern , J. Glimm , O. McBryan , B. Plohr and S. Yanvi , Front tracking for gas dynamics, J. Comput. Phys., 62 (1986), pp. 83110.

[10] J. Glimm , M. J. Graham , J. Grove , X. L. Li , T. M. Smith , D. Tan , F. Tangerman and Q. Zhang , Front tracking in two and three dimensions, Comput. Math. Appl., 35 (1998), pp. 111.

[11] R. R. Nourgaliev , M.-S. Liou , and T. G. Theofanous , Numerical prediction of interfacial instabilities: Sharp interface method (SIM), J. Comput. Phys., 227 (2008), pp. 39403970.

[12] C.-H. Chang , X. L. Deng and T. G. Theofanous , Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242 (2013), pp. 946990.

[14] R. Caiden , R. P. Fedkiw and C. Anderson , A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166 (2001), pp. 127.

[15] R. P. Fedkiw , Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175 (2002), pp. 200224.

[16] T. G. Liu , B. C. Khoo and K. S. Yeo , Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190 (2003), pp. 651681.

[17] T. G. Liu , B. C. Khoo and C. W. Wang , The ghost fluid method for compressible gas-water simulation, J. Comput. Phys., 204 (2005), pp. 193221.

[18] C. W. Wang , T. G. Liu and B. C. Khoo , A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28 (2006), pp. 278302.

[19] X. Y. Hu and B. C. Khoo , An interface interaction method for compressible multifluids, J. Comput. Phys., 198 (2004), pp. 3564.

[20] X. Y. Hu , B. C. Khoo , N. A. Adams and F. L. Huang , A conservative interface method for compressible flows, J. Comput. Phys., 219 (2006), pp. 553578.

[22] C. H. Chang and M. S. Liou , A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme, J. Comput. Phys., 225 (2007), pp. 840873.

[24] B. P. Sommeijer , P. J. Van Der Houwen and J. Kok , Time integration of three-dimendional numerical transport models, Appl. Numer. Math., 16 (1994), pp. 201225.

[25] R. R. Nourgaliev and T. G. Theofanous , High-fidelity interface tracking in compressible flows: Unlimited anchored adaptived Level Set, J. Comput. Phys., 224 (2007), pp. 836866.

[26] H.-K. Zhao , T. Chan , B. Merriman and S. Osher , A variational level set approach to multiphase motion, J. Comput. Phys., 127 (1996), pp. 179195.

[27] M. Sussman , P. Smereka and S. Osher , A Level Set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), pp. 146159.

[28] M. Sussman , A. S. Almgren , J. B. Bell , P. Colella , L. H. Howell and M. L. Welcome , An adaptive Level Set approach for incompressible two-phase flow, J. Comput. Phys., 148 (1999), pp. 81124.

[29] D. P. Peng , B. Merriman , S. Osher , H. Zhao and M. Kang , A PDE-based fast local Level Set method, J. Comput. Phys., 155 (1999), pp. 410438.

[30] R. R. Nourgaliev , T. N. Dinh and T. G. Theofanous , Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213 (2006), pp. 500529.

[33] R. Saurel and R. Abgrall , A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21 (1999), pp. 11151145.

[34] R. D. Richtmyer , Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 13 (1960), pp. 297313.

[38] R. L. Holmes , J. W. Grove and D. H. Sharp , Numerical investigation of Richtmyer-Meshkov instability using front-tracking, J. Fluid Mech., 301 (1995), pp. 5164.

[39] M. A. Ullah , W. B. Gao and D. K. Mao , Numerical simulations of Richtmyer-Meshkov instabilities using conservative front-tracking method, Appl. Math. Mech., 32 (2011), pp. 119132.

[40] P. Movahed and E. Johnsen , A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability, J. Comput. Phys., 239 (2013), pp. 166186.

[41] J. F. Haas and B. Sturtevant , Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181 (1987), pp. 4176.

[42] J. J. Quirk and S. Karni , On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318 (1996), pp. 129163.

[43] M. A. Ullah , W. B. Gao and D. K. Mao , Towards front-tracking based on conservation in two space dimensions III, tracking interfaces, J. Comput. Phys., 242 (2013), pp. 268303.

[44] K. M. Shyue , A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, J. Comput. Phys., 215 (2006), pp. 219244.

[45] H. Terashima and G. Tryggvason , A front-tracking/ghost-fluid method for fluid interface in compressible flows, J. Comput. Phys., 228 (2009), pp. 40124037.

[46] J. W. Grove and R. Menikoff , The anomalous reflection of a shock wave at a material interface, J. Fluid Mech., 219 (1990), pp. 313336.

[47] W. Bo and J. W. Grove , A volume of fluid based ghost fluid method for compressible multi-fluid flows, Comput. Fluids, 90 (2014), pp. 113122.

[48] N. K. Bourne and J. E. Field , Shock-induced collapse of single cavities in liquids, J. Fluid Mech., 244 (1992), pp. 225240.

[49] R. K. Shukla , Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276 (2014), pp. 508540.

[50] X. Y. Hu , N. A. Adams and G. Iaccarino , On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, J. Comput. Phys., 228 (2009), pp. 65726589.

[51] J. W. Grove and R. Menikoff , The anomalous reflection of a shock wave at a material interface, J. Fluid Mech., 219 (1990), pp. 313336.

[52] R. K. Shukla , C. Pantano and J. B. Freund , An interface caputing method for simulation of multi-phase compressible flows, J. Comput. Phys., 229 (2010), pp. 74117439.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 58 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 27th July 2017. This data will be updated every 24 hours.