Skip to main content
×
Home
    • Aa
    • Aa

Stokes Flow of Viscous Fluid Past a Micropolar Fluid Spheroid

  • M. Krishna Prasad (a1) and Manpreet Kaur (a1)
Abstract
Abstract

The Stokes axisymmetric flow of an incompressible viscous fluid past a micropolar fluid spheroid whose shape deviates slightly from that of a sphere is studied analytically. The boundary conditions used are the vanishing of the normal velocities, the continuity of the tangential velocities, continuity of shear stresses and spin-vorticity relation at the surface of the spheroid. The hydrodynamic drag force acting on the fluid spheroid is calculated. An exact solution of the problem is obtained to the first order in the small parameter characterizing the deformation. It is observed that due to increase spin parameter value, the drag coefficient decreases. Well known results are deduced and comparisons are made with classical viscous fluid and micropolar fluid.

Copyright
Corresponding author
*Corresponding author. Email: madaspra.maths@nitrr.ac.in, kpm973@gmail.com (M. K. Prasad), manpreet.kaur22276@yahoo.com (M. Kaur)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 102 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 22nd October 2017. This data will be updated every 24 hours.