Skip to main content

Stokes Flow of Viscous Fluid Past a Micropolar Fluid Spheroid

  • M. Krishna Prasad (a1) and Manpreet Kaur (a1)

The Stokes axisymmetric flow of an incompressible viscous fluid past a micropolar fluid spheroid whose shape deviates slightly from that of a sphere is studied analytically. The boundary conditions used are the vanishing of the normal velocities, the continuity of the tangential velocities, continuity of shear stresses and spin-vorticity relation at the surface of the spheroid. The hydrodynamic drag force acting on the fluid spheroid is calculated. An exact solution of the problem is obtained to the first order in the small parameter characterizing the deformation. It is observed that due to increase spin parameter value, the drag coefficient decreases. Well known results are deduced and comparisons are made with classical viscous fluid and micropolar fluid.

Corresponding author
*Corresponding author. Email:, (M. K. Prasad), (M. Kaur)
Hide All
[1] Eringen A. C., Theory of micropolar fluids, J. Math. Mech., 16 (1966), pp. 118.
[2] Eringen A. C., Microcontinuum Field Theories II: Fluent Media, Springer, New York, 2001.
[3] Ariman T., Turk M. A. and Sylvester N. D., Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci., 12 (1974), pp. 273293.
[4] Lukaszewicz G., Micropolar Fluids: Theory and Applications, Birkhäuser, Basel, 1999.
[5] Rybczynski W., On the translatory motion of a fluid sphere in a viscous medium, Bull Acad. Sci. Cracow. Ser. A, 40 (1911), pp. 4046.
[6] Hadamard J. S., Mécanique-mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux, CR Acad. Sci., 152 (1911), pp. 17351738.
[7] Hetsroni G. and Haber S., The flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field, Rheol Acta, 9 (1970), pp. 488496.
[8] Bart E., The slow unsteady settling of a fluid sphere toward a flat fluid interface, Chem. Eng. Sci., 23 (1968), pp. 193210.
[9] Wacholder E. and Weihs D., Slow motion of a fluid sphere in the vicinity of another sphere or a plane boundary, Chem. Eng. Sci., 27 (1972), pp. 18171828.
[10] Lee T. C. and Keh H. J., Creeping motion of a fluid drop inside a spherical cavity, Euro. J. Mech. B/Fluids, 34 (2012), pp. 97104.
[11] Rao S. K. L. and Rao P. B., Slow stationary flow of a micropolar liquid past a sphere, J. Eng. Math., 4 (1970), pp. 209217.
[12] Rao S. K. L. and Iyengar T. K. V., The slow stationary flow of incompressible micropolar fluid past a spheroid, Int. J. Eng. Sci., 19 (1981), pp. 189220.
[13] Iyengar T. K. V. and Srinivasacharya D., Stokes flow of an incompressible micropolar fluid past an approximate sphere, Int. J. Eng. Sci., 31 (1993), pp. 115123.
[14] Ramkissoon H. and Majumdar S. R., Drag on axially symmetric body in the Stokes flow of micropolar fluid, Phys. Fluids, 19 (1976), pp. 1621.
[15] Sawada T., Kamata T., Tanahashi T. and Ando T., Stokesian flow of a micropolar fluid past a sphere, Keio Science and Technology Reports, 36 (1983), pp. 3347.
[16] Ramkissoon H., Flow of a micropolar fluid past a Newtonian fluid sphere, Z. Angew. Math. Mech., 65 (1985), pp. 635637.
[17] Ramkissoon H. and Majumdar S. R., Micropolar flow past a slightly deformed fluid sphere, Z. Angew. Math. Mech., 68 (1988), pp. 155160.
[18] Hoffmann K. H., Marx D. and Botkin N. D., Drag on spheres in micropolar fluids with nonzero boundary conditions for microrotations, J. Fluid. Mech., 590 (2007), pp. 319330.
[19] Niefer R. and Kaloni P. N., On the motion of a micropolar fluid drop in a viscous fluid, J. Eng. Math., 14 (1980), pp. 107116.
[20] Sherief H. H., Faltas M. S. and Ashmawy E. A., Axi-symmetric translational motion of an arbitrary solid prolate body in a micropolar fluid, Fluid Dyn. Research, 42 (2010), 065504.
[21] Iyengar T. K. V. and Radhika T., Stokes flow of an incompressible micropolar fluid past a porous spheroidal shell, Bulletin of the Polish Academy of Sciences: Technical Sciences, 59 (2011), pp. 6374.
[22] Saad E. I., Cell models for micropolar flow past a viscous fluid sphere, Meccanica, 47 (2012), pp. 20552068.
[23] Jaiswal B. R. and Gupta B. R., Stokes flow of Micropolar fluid past a Non-Newtonian liquid spheroid, Int. J. Fluid Mech. Research, 42 (2015), pp. 170189.
[24] Sherief H. H., Faltas M. S., Ashmawy E. A. and Nashwan M. G., Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip, Phys. Scripta, 90 (2015), 055203.
[25] Faltas M. S. and Saad E. I., Slow motion of spherical droplet in a micropolar fluid flow perpendicular to a planar solid surface, Euro. J. Mech. B/Fluids, 48 (2014), pp. 266276.
[26] Happel J. and Brenner H., Low Reynolds Number Hydrodynamics, NJ: Prentice-Hall, Englewood Cliffs, 1965.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 200 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 18th January 2018. This data will be updated every 24 hours.