Skip to main content
×
Home
    • Aa
    • Aa

Stokes Flow of Viscous Fluid Past a Micropolar Fluid Spheroid

  • M. Krishna Prasad (a1) and Manpreet Kaur (a1)
Abstract
Abstract

The Stokes axisymmetric flow of an incompressible viscous fluid past a micropolar fluid spheroid whose shape deviates slightly from that of a sphere is studied analytically. The boundary conditions used are the vanishing of the normal velocities, the continuity of the tangential velocities, continuity of shear stresses and spin-vorticity relation at the surface of the spheroid. The hydrodynamic drag force acting on the fluid spheroid is calculated. An exact solution of the problem is obtained to the first order in the small parameter characterizing the deformation. It is observed that due to increase spin parameter value, the drag coefficient decreases. Well known results are deduced and comparisons are made with classical viscous fluid and micropolar fluid.

Copyright
Corresponding author
*Corresponding author. Email: madaspra.maths@nitrr.ac.in, kpm973@gmail.com (M. K. Prasad), manpreet.kaur22276@yahoo.com (M. Kaur)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3] T. Ariman , M. A. Turk and N. D. Sylvester , Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci., 12 (1974), pp. 273293.

[4] G. Lukaszewicz , Micropolar Fluids: Theory and Applications, Birkhäuser, Basel, 1999.

[7] G. Hetsroni and S. Haber , The flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field, Rheol Acta, 9 (1970), pp. 488496.

[8] E. Bart , The slow unsteady settling of a fluid sphere toward a flat fluid interface, Chem. Eng. Sci., 23 (1968), pp. 193210.

[9] E. Wacholder and D. Weihs , Slow motion of a fluid sphere in the vicinity of another sphere or a plane boundary, Chem. Eng. Sci., 27 (1972), pp. 18171828.

[10] T. C. Lee and H. J. Keh , Creeping motion of a fluid drop inside a spherical cavity, Euro. J. Mech. B/Fluids, 34 (2012), pp. 97104.

[11] S. K. L. Rao and P. B. Rao , Slow stationary flow of a micropolar liquid past a sphere, J. Eng. Math., 4 (1970), pp. 209217.

[12] S. K. L. Rao and T. K. V. Iyengar , The slow stationary flow of incompressible micropolar fluid past a spheroid, Int. J. Eng. Sci., 19 (1981), pp. 189220.

[13] T. K. V. Iyengar and D. Srinivasacharya , Stokes flow of an incompressible micropolar fluid past an approximate sphere, Int. J. Eng. Sci., 31 (1993), pp. 115123.

[14] H. Ramkissoon and S. R. Majumdar , Drag on axially symmetric body in the Stokes flow of micropolar fluid, Phys. Fluids, 19 (1976), pp. 1621.

[16] H. Ramkissoon , Flow of a micropolar fluid past a Newtonian fluid sphere, Z. Angew. Math. Mech., 65 (1985), pp. 635637.

[17] H. Ramkissoon and S. R. Majumdar , Micropolar flow past a slightly deformed fluid sphere, Z. Angew. Math. Mech., 68 (1988), pp. 155160.

[18] K. H. Hoffmann , D. Marx and N. D. Botkin , Drag on spheres in micropolar fluids with nonzero boundary conditions for microrotations, J. Fluid. Mech., 590 (2007), pp. 319330.

[19] R. Niefer and P. N. Kaloni , On the motion of a micropolar fluid drop in a viscous fluid, J. Eng. Math., 14 (1980), pp. 107116.

[20] H. H. Sherief , M. S. Faltas and E. A. Ashmawy , Axi-symmetric translational motion of an arbitrary solid prolate body in a micropolar fluid, Fluid Dyn. Research, 42 (2010), 065504.

[22] E. I. Saad , Cell models for micropolar flow past a viscous fluid sphere, Meccanica, 47 (2012), pp. 20552068.

[23] B. R. Jaiswal and B. R. Gupta , Stokes flow of Micropolar fluid past a Non-Newtonian liquid spheroid, Int. J. Fluid Mech. Research, 42 (2015), pp. 170189.

[24] H. H. Sherief , M. S. Faltas , E. A. Ashmawy and M. G. Nashwan , Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip, Phys. Scripta, 90 (2015), 055203.

[25] M. S. Faltas and E. I. Saad , Slow motion of spherical droplet in a micropolar fluid flow perpendicular to a planar solid surface, Euro. J. Mech. B/Fluids, 48 (2014), pp. 266276.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 33 *
Loading metrics...

* Views captured on Cambridge Core between 11th July 2017 - 26th July 2017. This data will be updated every 24 hours.