[1]
Bhatnagar, P. L., Gross, E. P. and Krook, M., A model for collision processes in gasses. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), pp. 511–525.

[2]
Bouzidi, M., D'Humieres, D., Lallemand, P. and Luo, L. S., Lattice Boltzmann equation on a two-dimensional rectangular grid, J. Comput. Phys., 172 (2001), pp. 704–717.

[3]
Bruneau, C. H. and Saad, M., The 2D lid-driven cavity problem revisited, Comput. Fluids, 35 (2006), pp. 326–348.

[4]
Burggraf, O. R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24 (1966), pp. 113–151.

[5]
Cazemier, W., Verstappen, R. W. and Veldman, A. E., Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Phys. Fluids, 10 (1998), pp. 1685–1699.

[6]
Ghia, U., Ghia, K. N. and Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387–411.

[7]
Guo, Z., Shi, B. and Wang, N., Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165 (2000), pp. 288–306.

[8]
He, X., Doolen, G. D. and Clark, T., Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations, J. Comput. Phys., 179 (2002), pp. 439–451.

[9]
Hou, S., Zou, Q., Chen, S., Doolen, G. and Cogley, A. C., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118 (1995), pp. 329–347.

[10]
Lallemand, P. and Luo, L. S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61 (2000), 6546.

[11]
Lammers, P., Beronov, K. N. and Volkert, R.
et al., Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow, Comput. Fluids, 35 (2006), pp. 1137–1153.

[12]
Li, J. and Wang, Z., An alternative scheme to calculate the strain rate tensor for the LES applications in LBM, Math. Problems Eng., (2010), 724578.

[13]
Marchi, C. H., Suero, R. and Araki, L. K., The lid-driven cavity flow: Numerical solution with a 1024×1024 grid, J. Brazilian Society Mech. Sci. Eng., 31 (2009), pp. 186–198.

[14]
Marie, S., Ricot, D. and Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228 (2008), pp. 1056–1070.

[15]
Martinez, D. O., Matthaeus, W. H., Chen, S. and Montgomery, D. C., Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids, 6 (2006), pp. 1285–1298.

[16]
McNamara, G. R. and Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett., 61 (1988), 2332.

[17]
Murdock, J. R. and Yang, S. L., Alternative and explicit derivation of the lattice Boltzmann equation for the unsteady incompressible Navier-Stokes equation, Int. J. Comput. Eng. Res., 6 (2016), pp. 47–59.

[18]
Peng, Y. F., Shiau, Y. H. and Hwang, R. R., Transition in a 2-D lid driven cavity flow, Comput. Fluids, 32 (2003), pp. 337–352.

[19]
Poliashenko, M. and Aidun, C. K., A direct method for computation of simple bifurcations, J. Comput. Phys., 121 (2006), pp. 246–260.

[20]
Shi, B., He, N. and Wang, N., A unified thermal lattice BGK model for Boussinesq equations, Prog. Comput. Fluid Dyn., 5 (2005).

[21]
Wang, R. Z. and Fang, H. P., Test of the possible application of the half-way bounce-back boundary condition for lattice Boltzmann methods in complex geometry, Commun. Theor. Phys., 35 (2000), pp. 593–596.

[22]
Zhang, C., Cheng, Y., Huang, S. and Wu, J., Improving the stability of themultiple-relaxation-time lattice Boltzmann method by a viscosity counteracting approach, Adv. Appl. Math. Mech., 8 (2016), pp. 37–51.