Skip to main content
×
Home

The Variational Iteration Method for an Inverse Problem of Finding a Source Parameter

  • Zongli Ma (a1) (a2) and Shumin Li (a1)
Abstract
Abstract

An inverse problem of determining unknown source parameter in a parabolic equation is considered. The variational iteration method (VIM) is presented to solve inverse problems. The solution gives good approximations by VIM. A numerical example shows that the VIM works effectively for an inverse problem.

Copyright
Corresponding author
*Corresponding author. Email: sdmzl@126.com (Z. L. Ma)
References
Hide All
[1] Dehghan M., An inverse problem of finding a source parameter in a semilinear parabolic equation, Appl. Math. Modelling, 25 (2001), pp. 743754.
[2] Le T. M., Pham Q. H., Dang T. D. and Nguyen T. H., A backward parabolic equation with atime-dependent coefficient: Regularization and eror estimates, J. Comput. Appl. Math., 237 (2013), pp. 432441.
[3] Cannon J. R., Lin Y. and Xu S., Numerical procedures for the determination of an unknown coefficiet in semilinear parabolic defferential equations, Inverse Problems, 10 (1994), pp. 227243.
[4] Cannon J. R., Lin Y. and Wang S., Determination of source parameter in parabolic equations, Meccanica, 27 (1992), pp. 8594.
[5] He Jihuan, A new approach to nonlinear partial differential equations, Nonlinear Science and Numerical Simulation, 2(4) (1997), pp. 230235.
[6] He J., Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., 34 (1999), pp. 699708.
[7] He J. H., Non-Perturbative Methods for Strongly Nonlinear Problems, Dissertation, deVerlag in GmbH, Berlin, 2006.
[8] He J. H., Wu G. C. and Austin F., The variational iteration method which should be followed, Nonlinear Sci. Lett. A, 1(1) (2010), pp. 130.
[9] Biazar J. and Ghazvini H., He's variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. Math. Comput., 191 (2007), pp. 287297.
[10] Jafari H., A comparison between the variational iteration method and the successive approximations method, Appl. Math. Lett., 32 (2014), pp. 15.
[11] Mokhtari R. and Mohammadi M., Some remarks on the variational iteration method, Int. J. Nonlinear Sci. Numer. Simul., 10(1) (2009), pp. 6774.
[12] Geng F. Z., A piecewise variational iteration method for treating a nonlinear oscillator of a mass attached to a stretched elastic wire, Comput. Math. Appl., 62 (2011), pp. 16411644.
[13] Liu J. and Tang J., Variational iteration method for solving an inverse parabolic equation, Phys. Lett. A, 372 (2008), pp. 35693572.
[14] Varedi S. M., Hosseini M. J., Rahimi M. and Ganji D. D., He's variational iteration method for solving a semi-linear inverse parabolic equation, Phys. Lett. A, 370 (2007), pp. 275280.
[15] Yildirim A., Variational iteration method for inverse problem of diffusion equation, Int. J.Numer. Meth. Biomed. Eng., 26 (2010), pp. 17131720.
[16] Parzlivand F. and Shahrezaee A., Identifying an unknown coefficient in the reaction-diffusion equation using He's VIM, Hindawi Publishing Corporation Advances in Numerical Analysis, Volume 2014, Article ID 547973.
[17] Tatari M. and Dehghan M., On the convergence of He's variational iteration method, J. Comput. Appl. Math., 207 (2007). pp. 121128.
[18] Elsgolts L., Differential Equations and the Calculus of Variations, translated from the Russian by Yankovsky G., Mir, Moscow, 1977.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 217 *
Loading metrics...

Abstract views

Total abstract views: 447 *
Loading metrics...

* Views captured on Cambridge Core between 18th January 2017 - 18th November 2017. This data will be updated every 24 hours.