Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T02:20:58.205Z Has data issue: false hasContentIssue false

The Use of Layered Synthetic Microstructures for Quantitative Analysis of Elements: Boron to Magnesium

Published online by Cambridge University Press:  06 March 2019

Joseph A. Nicolosi
Affiliation:
Philips Electronic Instruments, Inc., 85 McKee Dr., Mahwah, New Jersey 07430, U.S.A.
John P. Groven
Affiliation:
Philips Electronic Instruments, Inc., 85 McKee Dr., Mahwah, New Jersey 07430, U.S.A.
Daryn Merlo
Affiliation:
Philips Electronic Instruments, Inc., 85 McKee Dr., Mahwah, New Jersey 07430, U.S.A.
Get access

Extract

Layered Synthetic Microstructures (LSMs) were first reported as commercially available diffracting structures for routine x-ray spectrochemical analysis in 1984 (Nicolosi et al.). Innitially, these devices (PX-1 and PX-2) were intended for use as alternatives for Thallium Acid Phthlate (TAP) and Lead Octadeconate (LOD) for improved stability and diffracted intensity. Improvements in the analytical performance of X-Ray Spectrometers for the elements carbon to magnesium has met, and in some cases exceeded, innitial expectations. Having captured the interest of many new possible applications, developments for LSMs with larger 2d-spacing and greater reflectivity have continued.

Previous instruments employing LSMs have had difficulty in measuring X-Ray energies below the carbon K-series characteristic. Below the carbon K-edge energy, several significant phenomenon combine to reduce sensitivity. Among these are: 1) Reduced reflectivity of conventional LSMs, 2) Increased absorption at the polypropylene window of the detector, and 3) Greater electronic noise.

Type
IV. Recent Developments in XRF Dispersion Devices
Copyright
Copyright © International Centre for Diffraction Data 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbee, T.W., N. S. F. Twenty Sixth Annual Report U.S. Government Painting Office #038-000-00313-5, 019 (1976).Google Scholar
Bargee, T.W., Proc. of A. I. 75, Monterey, C., pp. 131-145, (1951).Google Scholar
Barbee, T.W., Proc, of SPIE. 63, San Diego, California, (1985) 2-28.Google Scholar
Bertin, E.P., Principles and Practice of X-Ray Spectrometric Analysis, pp. 89-106, Plenum Press, N.Y. (1975).Google Scholar
Blodgett, K., J. Amer. Chem. Soc. 57, PP- 1007-1022, (1935).Google Scholar
Dinklage, J. and Frerieks, R., J. Appl. Phys. 11, 2663 (1963).Google Scholar
DuMond, J. and loutz, J.P., J. Appl. Phys. 11, 357 (1963).Google Scholar
Eenbergen, A. v., and Volbert, B., Advances in X-Ray Analysis 30 (1986).Google Scholar
Ehlert, R.C., and Mattson, R.A., Adv. in X-Ray Anal. 10, p, 389 (1967).Google Scholar
Gilfrich, J.V., D.J., Nagel, Loter, N.G. and Barbee, T.W., Adv. X-Ray Anal. 25, pp. 355364, (1982).Google Scholar
Gilfrich, J.V., Nagel, D.J. and Barbee, T.W., Applied Spec. 36 (1), pp. 5861, (1982).Google Scholar
Henke, B.L., Adv. in X-Ray Analysis 8, pp. 269284, (1965).Google Scholar
Henke, B.L., Proc. of A. I. P. Low Energy X-Ray Biagnostics, “Monterey, Ca., pp. 146-155, (1981).Google Scholar
Henke, B.L., Uejio, J.Y., Tackaberry, R.E., Yamada, H.T., Proc. of SPIE. 63, San Diego, California, (1985) 201-215.Google Scholar
Jenkins, R.,X-Ray Spectrometry 1, pp. 2328, (1972).Google Scholar
Jenkins, R. and cte Vries, J.L., Practical X-Ray Spectrometry, pp. 26-65, Springer-Verlag, N. Y. (1975).Google Scholar
Jenkins, R., Nieolosi, J. A., Croke, J.F. and Merlo, D., Norelco Reporter 32 (1X. ), (1985).Google Scholar
Keem, J. and Ferris, D.H., Proc, 33 Denver X-Ray Conf. (1984) Abstract. Kikkert, J.N. and Hendry, G., Advances in X-Ray Analysis 27 (1983).Google Scholar
Kikkert, J.N. and de Koning, J.J., Proc. of 35th. Pittsburgh Conf., Atlantic City, N. J. (1984) 29 (Abstract only).Google Scholar
Marshall, G.F., Proc. of SPIE. 63, San Diego, Ca., (1985) 114134.Google Scholar
Nagel, D.J., Barbee, T. VI. and Gilfrich, J.V., Proc. SPIE. 15, pp. 110117, (1981),Google Scholar
Nieolosi, J.A., et al., “Applications of LSMs for the Measurement of Low Atomic Number Elements”, Proc. 33rd. Denver X-Ray Conf,, (1984).Google Scholar
Nieolosi, J.A., and Jenkins, R., Noreleo Reporter 31 (1XR)., (1984).Google Scholar
Nieolosi, J.A., Groven, J.P., Merlo, D., and Jenkins, R., Optical Engineering 25(8), (August, 1986) 964969.Google Scholar
Pianetta, R., Redaelli, R. and Barbee, T.W., Proc. of SPIE. 63, San Diego, Ca., (1985) 393-400.Google Scholar
Spiller, E., Optik 39, pp. 181-185, (1973).Google Scholar
Spiller, E., Proc. of A. I. P. 75, Monterey, C.,, pp. 124-130, (1981).Google Scholar
Spiller, E., Proc. of SPIE. 63, San Diego, Ca., (1985) 367-376Google Scholar
Takagi, Y., Flessa, S., Hart, K., Pawlik, D., Kadin, A., Wood, J., Keem, J., Tyler, J. Proc. of SPIE. 63, San Diego, Ca., (1985) 6670.Google Scholar
Wood, J., Grupido, N., Hart, K., Flessa, S., Kadin, A., Keem, J., Ferris, D., Proc, of SPIE. 63, San Diego, Ca., (1985) 238244.Google Scholar
Vidal, B., Vincent, P. and Dhez, P., Proc. SPIE. 63, San Diego, Ca., (1985) 142149.Google Scholar