Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T07:18:27.346Z Has data issue: false hasContentIssue false

Residual Stress in Ion Implanted Titanium Nitride Studied by Parallel Beam Glancing Incidence X-ray Diffraction

Published online by Cambridge University Press:  06 March 2019

Daniel E. Geist
Affiliation:
Martin Marietta, Mail Stop 9683, EO. Box 179 Denver CO 80201, U.S.A.
Anthony J. Perry
Affiliation:
Martin Marietta, Mail Stop 9683, EO. Box 179 Denver CO 80201, U.S.A.
James R. Tireglio
Affiliation:
Martin Marietta, Mail Stop 9683, EO. Box 179 Denver CO 80201, U.S.A.
Vaclav Valvoda
Affiliation:
Martin Marietta, Mail Stop 9683, EO. Box 179 Denver CO 80201, U.S.A.
David Rafaja
Affiliation:
Martin Marietta, Mail Stop 9683, EO. Box 179 Denver CO 80201, U.S.A.
Get access

Abstract

Ion implantation is known to increase the lifetime of cutting tools. Current theories are the increase in lifetime is caused by an increase in the residual stress, or by work hardening of the surface associated with the implantation. In this work the effect of ion implantation on the residual stress in titanium nitride coatings made by the standard industrial methods of chemical and physical vapor deposition (CVD and PVD) is studied. It is found in the as-received condition (unimplanted), the residual stress levels are near zero for CVD materials and highly compressive, of the order of 6 GPa, for PVD materials. Ion implantation has no effect on the residual stress: in the coatings made by CVD. Nitrogen does increase the compressive residual stress by some 10% in the near surface regions of PVD coatings, while nickel-titanium dual metal ion implantation does not have any effect. It appears that the lifetime increase is not associated with residual stress effects.

Type
V. Residual Stress, Crystallite Size and rms Strain Determination by Diffraction Methods
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brunei, M., Acta Cryst., A42 (1986) 304.Google Scholar
2. Gilles, B. and Brunei, M., Nucl Instr. Meth. Phys. Res., B44 (1990) 331.Google Scholar
3. Pons, F., Megtert, S., Pivin, J.C., Pequignot, M., Mairey, D. and Roques-Carmes, C., J.Appl. Cryst, 21 (1988) 197.Google Scholar
4. Perry, A.J., Valvoda, V., Rafaja, D., Williamson, D.L. and Sartweil, B.D., Surf. Coat. Technoi, 54/55 (1992) 180.Google Scholar
5. Perry, A.J., Sartweil, B.D., Valvoda, V., Rafaja, D., Williamson, D.L. and Nelson, A.J., J. Vac. Sci. Technoi. A, 10 (1992) 1446.Google Scholar
6. Seemann, H., Ann. Phys., 59 (1919) 455.Google Scholar
7. Bohlm, H., Ann. Phys., 61 (1920) 420.Google Scholar
8. Parrish, W., Hart, M. and Huang, T.C., I Appl. Cryst.., 19 (1986) 92.Google Scholar
9. Lim, G., Parrish, W., Ortiz, C., Bellotto, M. and Hart, M., J. Mater. Set, 2 (1987) 471.Google Scholar
10. Parrish, W., Australian J. Phys., 41 (1988) 101.Google Scholar
11. Toney, M.F., Huang, T.C., Brennan, S. and Reck, Z., Mater. ScL, 3 (1988) 351.Google Scholar
12. Culbertson, R.J., Burns, F.C., Franzen, W., Lowder, L.J., Ricca, J.J. and Gonzales, A., Nucl. Instr. Meth. Phys. Res. B, 56/57 (1991) 652.Google Scholar
13. Treglio, J.R., Tian, A. and Perry, A.J., Surf. Coat. Techno!., 62 (1993) 438.Google Scholar
14. Walter, JX., Kelly, G.W. and Minnear, W.P., Wear, 170 (1993) 79.Google Scholar
15. Vesnovsky, O.K., Surf. Coat. TechnoL, 52 (1991) 297.Google Scholar
16. Didenko, A.N., Ligachov, A.E., Kurakin, L.B., Sipailo, M.G., Kozlov, E.V. and Sharkeev, J.B., Surf. Coat. TechnoL, 51 (1992) 186.Google Scholar
17. Sharkeev, J.B., Didenko, A.N., Kozlov, E.V., Surf. Coat. TechnoL, 65 (1994) 112.Google Scholar
18. Treglio, J.R., Magmison, G.D. and Tooker, R.J., Surf. Coat. TechnoL, 51 (1992) 546.Google Scholar
19. Feder, R. and Berry, B.S., J. Appl. Crystallogr., 3 (1970) 372.Google Scholar
20. Perry, AJ., Treglio, J.R., Schaffer, J.P., Brunner, J., Valvoda, V. and Rafaja, D., Surf. Coat. TechnoL, in press.Google Scholar
21. Soller, W., Phys Rev., 24 (1924) 158.Google Scholar
22. Rafaja, D. and Valvoda, V., Powder Diffi:, 6 (1991) 200.Google Scholar
23. Torok, E., Perry, A.J., Chollet, L. and Sproul, W.D., Thin Solid Films, 153 (1987) 37.Google Scholar
24. Perry, AJ., Thin Solid Films, 193/194 (1990) 463.Google Scholar
25. Behnken, H. and Hauk, V., Z. Metallic., 77 (1986) 620.Google Scholar
26. Perry, AJ., Valvoda, V. and Rafaja, D., Thin Solid Films, 214 (1987) 37.Google Scholar
27. Schaffer, J.P., Perry, A.J. and Brunner, J., J. Vac. Set. TechnoL A, 10 (1992) 169.Google Scholar
28. A review of the literature (Perry, A.J., Georgson, M. and Sproul, W.D., Thin Solid Films, 157 (1988) 255. indicates that the lattice parameter in super-stoichiometric TIN made by PVD methods continues to rise with increasing nitrogen content .Google Scholar