Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-5dsxc Total loading time: 0.234 Render date: 2021-04-22T15:38:17.239Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

An experimental method to determine the intralaminar fracture toughness of high-strength carbon-fibre reinforced composite aerostructures

Published online by Cambridge University Press:  30 July 2018

H. Liu
Affiliation:
School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
B.G. Falzon
Affiliation:
School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
G. Catalanotti
Affiliation:
School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
W. Tan
Affiliation:
Engineering Department, University of Cambridge, Cambridge, UK
Corresponding
E-mail address:

Abstract

Carbon fibres with high tensile strength are being increasingly utilised in the manufacture of advanced composite aerostructures. A Modified Compact Tension (MCT) specimen is often deployed to measure the longitudinal intralaminar fracture toughness but a high tensile strength often leads to premature damage away from the crack tip. We present an approach whereby the MCT specimen is supported by external fixtures to prevent premature damage. In addition, we have developed a novel measurement technique, based on the fibre failure strain and C-scanning, to determine the crack length in the presence of surface sublaminate delamination which masks the crack tip location. A set of cross-ply specimens, with a ((90/0)s)4 layup, were manufactured from an IMS60/epoxy composite system Two different data reduction schemes, compliance calibration and the area method, are used to determine the fibre-dominated initiation and propagation intralaminar fracture toughness values. Propagation values of fracture toughness were measured at 774.9 ± 5.2% kJ/m2 and 768.5 ± 4.1% kJ/m2, when using the compliance calibration method and the area method, respectively. Scanning Electron Microscopy (SEM) is carried out on the fracture surface to obtain insight into the damage mechanism of high-tensile-strength fibre-reinforced unidirectional composites. The measured tensile fracture toughness value is used in a fully validated computational model to simulate the physical test.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Falzon, B.G. Impact damage and repair of composite structures, Aeronautical J, 2009, 113, pp 431445.CrossRefGoogle Scholar
2.Catalanotti, G., Xavier, J. and Camanho, P.P. Measurement of the compressive crack resistance curve of composites using the size effect law, Composites Part A: Applied Science and Manufacturing, 2014, 56, pp 300307.CrossRefGoogle Scholar
3.Middleton, D. The first fifty years of composite materials in aircraft construction, The Aeronautical J, 1992, 96, pp 96104.Google Scholar
4.Catalanotti, G., Camanho, P.P., Xavier, J., Dávila, C.G. and Marchques, A.T. Measurement of resistance curves in the longitudinal failure of composites using digital image correlation, Composites Science and Technology, 2010, 70, pp 19861993.CrossRefGoogle Scholar
5.Ortega, A., Maimí, P., González, E.V. and Ripoll, L. Compact tension specimen for orthotropic materials, Composites Part A: Applied Science and Manufacturing, 2014, 63, pp 8593.CrossRefGoogle Scholar
6.Tan, W., Falzon, B.G., Price, M. and Liu, H. The role of material characterisation in the crush modelling of thermoplastic composite structures, Composite Structures, 2016, 153, pp 914927.CrossRefGoogle Scholar
7.Donadon, M.V., Falzon, B.G., Iannucci, L. and Hodgkinson, J.M. Intralaminar toughness characterisation of unbalanced hybrid plain weave laminates, Composites Part A: Applied Science and Manufacturing, 2007, 38, pp 15971611.CrossRefGoogle Scholar
8.Carrillo-Sánchez, F., Canche-Escamilla, G. and Herrera-Franco, P.J. A study of the fracture toughness of acrylic composites using the essential work of fracture method, Polymer Testing, 2010, 29, pp 565571.CrossRefGoogle Scholar
9.Marchchetti, M., La Barbera, A. and Morganti, F. Fracture analysis of complex shaped structures by numerical and experimental methods, Aeronautical J, 1989, 93, pp 141150.Google Scholar
10.Vaidya, R.S. and Sun, C.T. Fracture criterion for notched thin composite laminates, AIAA J, 1997, 35, pp 311316.CrossRefGoogle Scholar
11.Blanco, N., Trias, D., Pinho, S.T. and Robinson, P. Intralaminar fracture toughness characterisation of woven composite laminates. Part I : Design and analysis of a compact tension (CT) specimen, Engineering Fracture Mechanics, 2014, 131, pp 349360.CrossRefGoogle Scholar
12.Donadon, M.V, Falzon, B.G., Iannucci, L. and Hodgkinson, J.M. Measurement of fibre fracture toughness using an alternative specimen geometry, Proceedings of the 16th International Conference on Composite Materials, 8-13 July, 2007, Kyoto, Japan.Google Scholar
13.Li, X., Hallett, S.R., Wisnom, M.R., Zobeiry, N., Vaziri, R. and Poursartip, A. Experimental study of damage propagation in over-height compact tension tests, Composites Part A: Applied Science and Manufacturing, 2009, 40, pp 18911899.CrossRefGoogle Scholar
14.Laffan, M.J., Pinho, S.T., Robinson, P. and McMillan, A.J. Translaminar fracture toughness testing of composites: A review, Polymer Testing, 2012, 31, pp 481489.CrossRefGoogle Scholar
15.Pinho, S.T., Robinson, P. and Iannucci, L. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites, Composites Science and Technology, 2006, 66, pp 20692079.CrossRefGoogle Scholar
16.Laffan, M.J., Pinho, S.T., Robinson, P., Iannucci, L. and McMillan, A. J. Measurement of the fracture toughness associated with the longitudinal fibre compressive failure mode of laminated composites, Composites Part A: Applied Science and Manufacturing, 2012, 43, pp 19301938.CrossRefGoogle Scholar
17.Laffan, M.J., Pinho, S.T., Robinson, P. and Iannucci, L. Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: Size and lay-up effects, Composites Science and Technology, 2009, 70, pp 614621.CrossRefGoogle Scholar
18.Underwood, J.H. and Lloyd, W.R. Methods and Results from Interlaboratory Tests of Carbon / Epoxy Laminates, Benet Laboratories, TECHNICAL REPORT ARCCB-TR-95013, 1995.Google Scholar
19.Bergan, A.C. and Dávila, C.G. Cohesive Laws for Analyzing through-Crack Propagation in Cross Ply Laminates, July 19-24, 2015.Google Scholar
20.Catalanotti, G., Xavier, J. and Camanho, P.P. Measurement of the compressive crack resistance curve of composites using the size effect law, Composites Part A: Applied Science and Manufacturing, 2014, 56, pp 300307.CrossRefGoogle Scholar
21.Williams, C., Summerscales, J. and Grove, S. Resin infusion under flexible tooling (RIFT): A review, Composites Part A: Applied Science and Manufacturing, 1996, 27, pp 517524.CrossRefGoogle Scholar
22.Salvi, A.G., Waas, A.M. and Caliskan, A. Energy absorption and damage propagation in 2D triaxially braided carbon fiber composites: Effects of in situ matrix properties, J of Materials Science, 2008, 43, pp 51685184.CrossRefGoogle Scholar
23.Laffan, M.J., Pinho, S.T., Robinson, P. and Iannucci, L. Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: Size and lay-up effects, Composites Science and Technology, 2010, 70, pp 614621.CrossRefGoogle Scholar
24.Laffan, M.J., Pinho, S.T., Robinson, P. and Iannucci, L. Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part I: Data reduction, Composites Science and Technology, 2010, 70, pp 606613.CrossRefGoogle Scholar
25.Pimenta, S. and Pinho, S.T. An analytical model for the translaminar fracture toughness of fibre composites with stochastic quasi-fractal fracture surfaces, J of the Mechanics and Physics of Solids, 2014, 66, pp 78102.CrossRefGoogle Scholar
26.Tan, W. and Falzon, B.G. Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading, Composites Science and Technology, 2016, 126, pp 6077.CrossRefGoogle Scholar
27.Abaqus 6.12 documentation, 2012, Dassault Systèmes, Providence, Rhode Island, US.Google Scholar
28.Davies, G. and Zhang, X. Predicting impact damage of composite stiffened panels, Aeronautical J, 2000, 104, pp 97103.Google Scholar
29.Abrate, S. Impact on composite structures, 1998, Aeronautical J, 1998, pp 541563.Google Scholar
30.Liu, H., Falzon, B.G. and Tan, W. Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates, Composites Part A: Applied Science and Manufacturing, 2017, 105, pp 189202.CrossRefGoogle Scholar
31.Liu, H., Falzon, B.G. and Tan, W. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates, Composites Part B: Engineering, 2018, 136, pp 101118.CrossRefGoogle Scholar
32.Falzon, B.G., Liu, H. and Tan, W. Comment on “A tensorial based progressive damage model for fiber reinforced polymers”, Composite Structures, 2017, 176, pp 877882.CrossRefGoogle Scholar
33.Falzon, B.G. and Apriluzzese, P. Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation, Composite Structures, 2011, 93, pp 10391046.CrossRefGoogle Scholar
34.Falzon, B.G. and Apriluzzese, P. Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: Applications, Composite Structures, 2011, 93, pp 10471053.CrossRefGoogle Scholar
35.ASTM, Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, D6671/D 6671M-03, 2003, West Conshohocken, Pennsylvania, US.Google Scholar
36.ASTM, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, D7905/D7905M-14, 2014, West Conshohocken, Pennsylvania, US.Google Scholar
37.ASTM, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, D5528-01, 2004, West Conshohocken, Pennsylvania, US.Google Scholar
38.Pinho, S.T., Robinson, P. and Iannucci, L. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites, Composites Science and Technology, 2006, 66, pp 20692079.CrossRefGoogle Scholar
39.ASTM, Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method, D7078/D7078M-05, 2005, West Conshohocken, Pennsylvania, US.Google Scholar
40.Schuecker, C. and Davidson, B.D. Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination, Composites Science and Technology, 2000, 60, pp 21372146.CrossRefGoogle Scholar
41.Zabala, H., Aretxabaleta, L., Castillo, G. and Aurrekoetxea, J. Dynamic 4 ENF test for a strain rate dependent mode II interlaminar fracture toughness characterization of unidirectional carbon fibre epoxy composites, Polymer Testing, 2016, 55, pp 212218.CrossRefGoogle Scholar
42.Benzeggagh, M.L. and Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Composites Science and Technology, 1996, 56, pp 439449.CrossRefGoogle Scholar
43.Liang, Y., Wang, H. and Xuesen, G. In-plane shear response of unidirectional fiber reinforced and fabric reinforced carbon/epoxy composites, Polymer Testing, 2013, 32, pp 594601.CrossRefGoogle Scholar
44.ASTM, Standard Test Method for Shear Properties of Composite Materials by the V-notched Beam Method, D5379 / D5379M-12, West Conshohocken, PA, 2012.Google Scholar
45.Shi, Y. and Soutis, C. A finite element analysis of impact damage in composite laminates, Aeronautical J, 2012, 116, pp 13311347.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 48
Total number of PDF views: 262 *
View data table for this chart

* Views captured on Cambridge Core between 30th July 2018 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An experimental method to determine the intralaminar fracture toughness of high-strength carbon-fibre reinforced composite aerostructures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An experimental method to determine the intralaminar fracture toughness of high-strength carbon-fibre reinforced composite aerostructures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An experimental method to determine the intralaminar fracture toughness of high-strength carbon-fibre reinforced composite aerostructures
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *