Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-08-03T07:32:53.005Z Has data issue: false hasContentIssue false

On the induced drag reduction due topropeller-wing interaction

Published online by Cambridge University Press:  04 July 2016

G. Chiocchia
Affiliation:
Department of Mechanics and Aeronautics, University of Palermo, Italy
S. Pignataro
Affiliation:
Department of Mechanics and Aeronautics, University of Palermo, Italy

Abstract

The aerodynamic interaction between a wing and a coupleof propellers in tractor configuration isinvestigated by means of a model based on thelifting line concept and under the assumption ofquasi-steady incompressible motion of inviscidfluid. The ways the propellers influence the wingperformances, particularly the induced drag, areanalysed. It turns out that the lift increase andthe possible drag reduction depend strongly on thedirection of the blade rotation and on the propellerdistances from midspan, and result from two maineffects: the direct propeller induction on the wingand the modification of the lift distribution alongthe span. An additional nonlinear (mixed)contribution affects the drag but has onlynegligible influence on the lift. The describedmodel allows one to evaluate separately all theseeffects and helps understanding their influence onthe global modification of the wingperformances.

Information

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Pistolesi, E. Aerodinamica, Chapter 6, UTET, Torino, 1932.Google Scholar
2. Glauert, H. The elements of airfoils and airscrew theory, Cambridge University Press, 1926.Google Scholar
3. Betz, A. Schraubenpropeller mit geringsten Energieverlust, In: PRANDTL, L. and BETZ, A. Vier Abhandlungen zur Hydrodynamik und Aerodynamik, Selbstvlg. D.K. Wilhelm Inst fur Stroemungsforschung, Goettingen, 1927.Google Scholar
4. Favier, D., Ettaouil, A. and Maresca, C. Numerical and experimental investigation of isolated propeller wakes in axial flight, J Aircraft, 1989, 26, (9), pp 837-846.Google Scholar
5. Witkowski, D.P., Lee, A.K.H. and Sullivan, J.P. Aerodynamic interaction between propellers and wings, J Aircraft, 1989, 26, (9), pp 829836.Google Scholar
6. Cho, J. and Williams, M.H. Propeller-wing interaction using a fre quency domain panel method, J Aircraft, 1990, 27, (3), pp 196203 Google Scholar
7. Pistolesi, E. Betrachtungen ueber die gegenseitige Beeinflussung von Tragfluegelsystemen, in Gesammelte Vortraege der Hauptversammlung 1937 del Lilienthal - Gesellschaft, Berlin, 1937.Google Scholar
8. Weissinger, J. Ueber die Auftriebverteilung von Pfeilfluegeln, Forsch.Ber.d.Zentr.f.wiss.Berichtswesen 1553, Berlin-Adlershof, 1942.Google Scholar
9. Proessdorf, S. and Tordella, D. On an extension of Prandtl's lifting line theory to curved wings, Impact Comp Sci Eng, 1991,3, pp 192212.Google Scholar
10. Favier, D. and Maresca, C. Etude du sillage 3D d'une hélice aérienne quadripale, AGARD CP 366, Paper No. 15, October 1984.Google Scholar
11. Favier, D., Nsi MBA, M., Barbi, C. and Maresca, C. A free-wake analysis for hovering rotors and advancing propellers, In: Proc 11th European Rotorcraft Forum, Paper No. 21, London, Sept 1985.Google Scholar
12. Mikhlin, S.G. and Proessdorf, S. Singular integral operators, Springer Verlag, 1986.Google Scholar
13. Munk, M.M. The minimum induced drag of airfoils, NACA Rep 121, 1921.Google Scholar