No CrossRef data available.
Published online by Cambridge University Press: 17 December 2025
In the process of utilising machine vision-assisted large aircraft component docking assembly, due to the occlusion induced by process equipment such as assembly tooling, the features on the calibration board cannot be extracted by each camera at the same time, resulting in calibration difficulties or calibration failure. This paper aims to propose a stereo calibration method for multi-cameras in large aircraft component assembly to improve calibration accuracy. Firstly, the sub-pixel edge extraction method based on Canny-Zernike is proposed to accurately extract the circular edges and circle centres of the calibration board, and the Zernike moment model is improved. The circle centre sorting method based on the triangular markers is introduced to realise the sorting of circle centres on the calibration board. Secondly, the intrinsic and extrinsic parameter models of multi-cameras and the visual parameter models between cameras are constructed, and Zhang’s calibration method and indirect calibration method are integrated to solve the parameters. Subsequently, the distortion correction model is optimised by Levenberg-Marquardt. Finally, experiments are performed to test the proposed method. The results show that the proposed method, compared with uncalibration and Zhang’s calibration method, the proposed method achieves stereo calibration of the multi-cameras under complex working conditions, enhances the calibration accuracy and improves the quality of the large aircraft component docking assembly.