Hostname: page-component-cb9f654ff-p5m67 Total loading time: 0 Render date: 2025-08-19T18:45:31.885Z Has data issue: false hasContentIssue false

Investigation into clustering of syntheticjet actuators for flow separation controlapplications

Published online by Cambridge University Press:  03 February 2016

S. C. Liddle
Affiliation:
School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK
N. J. Wood
Affiliation:
School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK

Abstract

An investigation into the behaviour of clusteredsynthetic jet Actuators for flow-controlapplications is described. Experiments have beenundertaken with two small-scale synthetic jetactuators in a zero-pressure gradientboundary-layer, in order to investigate the effectof configuration yaw angle and relative input signalphase. Oil-flow visualisation and hotwire anemometrytechniques were used, demonstrating that changes inthe downstream flow structure could be observed.Compared to a streamwise configuration, in which asymmetrical counter-rotating vortex pair wasproduced by the synthetic jet-boundary-layerinteraction, a broader asymmetric interaction wasproduced in a 15° yaw configuration. Streamwisevelocity contour plots, illustrating the developmentof the interaction downstream, over four phaseangles, were presented. Significant differences inthe PSD analyses of downstream streamwise velocitytime histories were found, suggesting that inputsignal phase could influence the stability and henceeffectiveness of flow structures used inflow-control applications.

Information

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2005 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Amitay, M., Smith, D.R., Kibens, V., Parekh, D.E. and Glezer, A.. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators; AIAA J, March 2001, 39, (3), pp 361370.Google Scholar
2. Pack, L.G., Schaeffler, N.W., Yao, C.S. and Seifert, A.. Active control of separation from the slat shoulder of a supercritical aerofoil, AIAA Paper, June 2002, pp 20023156.Google Scholar
3. Watson, M., Jaworski, A. J. and Wood, N.J.. A study of synthetic jets from rectangular and dual-circular orifices, Aeronaut J, 107, (1073) July 2003, pp 427434.Google Scholar
4. Smith, D.R.. Interaction of a synthetic jet with a crossflow boundary layer, AIAA J, November 2002, 40, (11), pp 22772288.Google Scholar
5. Bridges, A and Smith, D.R.. Influence of orificce orientation on a synthetic jet-boundary layer interaction, AIAA J, December 2003, 41, (12), pp 23942402.Google Scholar
6. Watson, M., Jaworski, A.J. and Wood, N.J.. Contribution to the understanding of flow interactions between multiple synthetic jets, AIAA J, 2003, 41, (4), pp 747749.Google Scholar
7. Crook, A., PhD Thesis, 2002, University of Manchester, UK.Google Scholar
8. Morgan, H.L., Experimental test results of the energy efficient transport (EET) flap-edge vortex model in the langley low-turbulence pressure tunnel, NASA TM-2002-211928, 2002.Google Scholar
9. Lockerby, D.A. and Carpenter, P.W.. Modeling and design of microjet actuators, AIAA J, February 2004, 42, (2), pp 220227.Google Scholar
10. Amitay, M. and Glezer, A.. Role of actuation frequency in controlled flow reattachment over a stalled aerofoil, AIAA J, 40, (2) February 2002, pp 209216.Google Scholar