Hostname: page-component-7f64f4797f-kg7gq Total loading time: 0.001 Render date: 2025-11-11T11:59:29.221Z Has data issue: false hasContentIssue false

A review on advancement in strategies for low-NOx hydrogen combustion with micromix technology

Published online by Cambridge University Press:  11 July 2025

Sushant K. Bawne
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Agartala, Agartala, Tripura 799046, India
Prasun Chakraborti
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Agartala, Agartala, Tripura 799046, India
Paramvir Singh*
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Agartala, Agartala, Tripura 799046, India
*
Corresponding author: Paramvir Singh; Email: param016@gmail.com

Abstract

Micromix combustion technology emerges as a promising solution to address challenges in achieving clean combustion, particularly for hydrogen utilisation. This review provides a critical analysis for the potential of micromixing by delving into its core principles, diverse applications and the factors influencing its performance. The paper focuses on injector design, flame stabilisation and NOx mitigation strategies within the micromixing framework. Key findings include innovative burner designs, optimised air distribution techniques and the crucial role of fuel properties, especially for hydrogen combustion. The review highlights significant reductions in NOx emissions achieved through micromix combustion technology. For instance, NOx emissions were lowered to 2.2 ppm at φ = 0.4, representing a 45% improvement compared to conventional design configurations. Furthermore, a reduction of 40% in NOx emissions compared to standard configurations was observed at an equivalence ratio of 0.65. The study also compares NOx emissions between hydrogen and its blended fuels, showing lower emissions for methane. By highlighting the importance of optimising fuel mixture formation and flame stability for various operating conditions, this review underscores the significance of micromix combustion for advancing sustainable combustion technologies with low NOx emissions and reduced chance of flashback in hydrogen combustion.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Scheffknecht, G., Al-Makhadmeh, L., Schnell, U. and Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art, Int. J. Greenhouse Gas Control, 2011, 5, pp S16S35.CrossRefGoogle Scholar
Haglind, F., Hasselrot, A. and Singh, R. Potential of reducing the environmental impact of aviation by usinghydrogen Part II: Aero gas turbine design, Aeronaut. J., 2006, 110, pp 541552. CrossRefGoogle Scholar
Michaud, M.G., Westmoreland, P.R. and Feitelberg, A.S. Chemical mechanisms of NOx formation for gas turbine conditions, In Symposium (international) on Combustion, pp 879887. Elsevier, 1992.Google Scholar
Chen, L., Msigwa, G., Yang, M., Osman, A.I., Fawzy, S., Rooney, D.W. and Yap, P.-S. Strategies to achieve a carbon neutral society: A review, Environ. Chem. Lett., 20, 2022, 22772310.CrossRefGoogle ScholarPubMed
Cecere, D., Giacomazzi, E., Di Nardo, A. and Calchetti, G. Gas turbine combustion technologies for hydrogen blends, Energies (Basel), 2023, 16, p 6829.CrossRefGoogle Scholar
Déparrois, N., Singh, P., Burra, K.G. and Gupta, A.K. Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2, Appl. Energy, 2019, 246, pp 110.CrossRefGoogle Scholar
Opeyemi, B.M. Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy, Energy, 2021, 228, p 120519.CrossRefGoogle Scholar
Yue, C.-D., Liu, C.-M. and Liou, E.M.L. A transition toward a sustainable energy future: feasibility assessment and development strategies of wind power in Taiwan, Energy Policy, 2001, 29, pp 951963.CrossRefGoogle Scholar
Haglind, F., Hasselrot, A. and Singh, R. Potential of reducing the environmental impact of aviation by using hydrogen Part I: Background, prospects and challenges, Aeronaut. J., 2006, 110, pp 533540.CrossRefGoogle Scholar
Ghoniem, A.F. Needs, resources and climate change: Clean and efficient conversion technologies, Prog. Energy Combust. Sci., 2011, 37, pp 1551.CrossRefGoogle Scholar
Khalil, A.E.E. and Gupta, A.K. Swirling distributed combustion for clean energy conversion in gas turbine applications, Appl. Energy, 2011, 88, pp 36853693.CrossRefGoogle Scholar
Funke, H.-W., Keinz, J., Kusterer, K., Ayed, A.H., Kazari, M., Kitajima, J., Horikawa, A. and Okada, K. Development and testing of a low NOx micromix combustion chamber for industrial gas turbines, Int. J. Gas Turb. Propul. Power Syst., 2017, 9, pp 2736.Google Scholar
Armaroli, N. and Balzani, V. The future of energy supply: Challenges and opportunities, Angew. Chem. Int. Ed., 2007, 46, pp 5266.CrossRefGoogle ScholarPubMed
Babayev, R., Im, H.G., Andersson, A. and Johansson, B. Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP, Energy Convers Manag., 2022, 264, p 115698.CrossRefGoogle Scholar
Caldeira, K., Jain, A.K. and Hoffert, M.I. Climate sensitivity uncertainty and the need for energy without CO2 emission, Science (1979), 2003, 299, pp 20522054.Google ScholarPubMed
Mourouzidis, C., Singh, G., Sun, X., Huete, J., Nalianda, D., Nikolaidis, T., Sethi, V., Rolt, A., Goodger, E. and Pilidis, P. Abating CO2 and non-CO2 emissions with hydrogen propulsion, Aeronaut. J., 2024, 128, pp 15761593.CrossRefGoogle Scholar
Lei, H. and Khandelwal, B. Hydrogen fuel for aviation, In Aviation Fuels, pp 237270. Elsevier, 2021.CrossRefGoogle Scholar
Lopez-Ruiz, G., Alava, I. and Blanco, J.M. Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach. Energy, 2021, 236, p 121456.CrossRefGoogle Scholar
Sun, X., Abbott, D., Vir Singh, A., Gauthier, P. and Sethi, B. Numerical investigation of potential cause of instabilities in a hydrogen micromix injector array, In Turbo Expo: Power for Land, Sea, and Air, p. V006T03A012. American Society of Mechanical Engineers, 2021.CrossRefGoogle Scholar
Funke, H.-W., Börner, S., Keinz, J., Kusterer, K., Kroniger, D., Kitajima, J., Kazari, M. and Horikawa, A. Numerical and experimental characterization of low NOx micromix combustion principle for industrial hydrogen gas turbine applications, In Turbo Expo: Power for Land, Sea, and Air, pp 10691079. American Society of Mechanical Engineers, 2012.CrossRefGoogle Scholar
Funke, H.H.-W., Beckmann, N., Keinz, J. and Horikawa, A. 30 Years of dry-low-NOx micromix combustor research for hydrogen-rich fuels—An overview of past and present activities, J. Eng. Gas Turbine Power, 2021, 143, p 071002.CrossRefGoogle Scholar
Ben Abdallah, R., Sethi, V., Gauthier, P.Q., Rolt, A.M. and Abbott, D. A detailed analytical study of hydrogen reaction in a novel micromix combustion system, In Turbo Expo: Power for Land, Sea, and Air, p V04BT04A028. American Society of Mechanical Engineers, 2018.CrossRefGoogle Scholar
Owusu, P.A. and Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent. Eng., 2016, 3, p 1167990.CrossRefGoogle Scholar
Luo, Z., Hu, Y., Xu, H., Gao, D., Li, W.: Cost-economic analysis of hydrogen for China’s fuel cell transportation field, Energies (Basel), 2020, 13, p 6522.CrossRefGoogle Scholar
Kojima, H., Nagasawa, K., Todoroki, N., Ito, Y., Matsui, T. and Nakajima, R. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production, Int. J. Hydrogen Energy, 2023, 48, pp 45724593.CrossRefGoogle Scholar
Singh, P., Kumar, R., Sharma, S. and Kumar, S. Effect of engine parameters on the performance of dual-fuel CI engines with producer gas—A review, Energy Fuels, 2021, 35, pp 1637716402.CrossRefGoogle Scholar
Ajanovic, A., Sayer, M. and Haas, R. The economics and the environmental benignity of different colors of hydrogen, Int. J. Hydrogen Energy, 2022, 47, pp 2413624154.CrossRefGoogle Scholar
Niaz, S., Manzoor, T. and Pandith, A.H. Hydrogen storage: Materials, methods and perspectives, Renew. Sustain. Energy Rev., 2015, 50, pp 457469.CrossRefGoogle Scholar
Muradov, N.Z. How to produce hydrogen from fossil fuels without CO2 emission, Int. J. Hydrogen Energy, 1993, 18, pp 211215.CrossRefGoogle Scholar
Hassan, Q., Algburi, S., Sameen, A.Z. and Salman, H.M. Assessment of industrial-scale green hydrogen production using renewable energy, Proc. Inst. Mech. Eng. A J. Power Energy, 2024, 238, pp 569587.CrossRefGoogle Scholar
Nandhini, R., Sivaprakash, B., Rajamohan, N. and Vo, D.-V.N. Carbon-free hydrogen and bioenergy production through integrated carbon capture and storage technology for achieving sustainable and circular economy–A review, Fuel, 2023, 342, p 126984.CrossRefGoogle Scholar
Warnatz, J., Maas, U., Dibble, R.W. and Warnatz, J. Combustion. Springer, 2006.Google Scholar
Ghali, P.F. and Khandelwal, B. Design and simulation of a hydrogen micromix combustor, In AIAA Scitech 2021 Forum, p 1984, 2021.CrossRefGoogle Scholar
Dahl, G. and Suttrop, F. Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines, Int. J. Hydrogen Energy, 1998, 23, pp 695704.CrossRefGoogle Scholar
Maher, L.E. Some problems arising from the use of hydrogen-fuelled propulsion systems, Aeronaut. J., 1964, 68, pp 765772.CrossRefGoogle Scholar
Funke, H.-W., Beckmann, N. and Abanteriba, S. An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications, Int. J. Hydrogen Energy, 2019, 44, pp 69786990.CrossRefGoogle Scholar
Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y.-G. and Wang, L. Review of modern low emissions combustion technologies for aero gas turbine engines, Prog. Aerosp. Sci., 2017, 94, pp 1245.CrossRefGoogle Scholar
Yang, X., Zhao, L., He, Z., Dong, S. and Tan, H. Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes, Appl. Therm. Eng., 2019, 160, p 114110.CrossRefGoogle Scholar
Choi, J., Ahn, M., Kwak, S., Lee, J.G. and Yoon, Y. Flame structure and NOx emission characteristics in a single hydrogen combustor, Int. J. Hydrogen Energy, 2022, 47, pp 2954229553.CrossRefGoogle Scholar
Fayaz, H., Saidur, R., Razali, N., Anuar, F.S., Saleman, A.R. and Islam, M.R. An overview of hydrogen as a vehicle fuel, Renew. Sustain. Energy Rev., 2012, 16, pp 55115528.CrossRefGoogle Scholar
Funke, H.H.-W., Börner, S., Robinson, A., Hendrick, P. and Recker, E. Low NOx H2 combustion for industrial gas turbines of various power ranges, 2010.Google Scholar
Schefer, R.W., White, C. and Keller, J. Lean hydrogen combustion, In Lean Combustion, pp 213VIII. Elsevier, 2008.CrossRefGoogle Scholar
Dennis, R., Long, H.A. III and Jesionowski, G. A literature review of NOx emissions in current and future state-of-the-art gas turbines, In Turbo Expo: Power for Land, Sea, and Air, vol. 86991, p V006T08A002, 2023.Google Scholar
Gupta, A., Ibrahim, M.S. and Amano, R.S. Effect of jet-to-mainstream momentum flux ratio on mixing process, Heat Mass Transfer, 2016, 52, pp 621634.CrossRefGoogle Scholar
Kroniger, D., Horikawa, A., Funke, H.H.-W., Pfaeffle, F., Kishimoto, T. and Okada, K. Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion, In Turbo Expo: Power for Land, Sea, and Air. p V03AT04A025. American Society of Mechanical Engineers, 2021.CrossRefGoogle Scholar
Funke, H.H.-W., Beckmann, N., Stefan, L. and Keinz, J. Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx “micromix” combustion principle, In Turbo Expo: Power for Land, Sea, and Air, p V001T01A022. American Society of Mechanical Engineers, 2023.CrossRefGoogle Scholar
Mohan, S. and Matalon, M. Diffusion flames and diffusion flame-streets in three dimensional micro-channels, Combust Flame, 2017, 177, pp 155170.CrossRefGoogle Scholar
Kim, J.S., Park, J., Kwon, O.B., Yun, J.H., Keel, S.I. and Kim, T.K. Preferential diffusion effects on NO formation in methane/hydrogen-air diffusion flames, Energy Fuels, 2008, 22, pp 278283.CrossRefGoogle Scholar
Hussain, M., Abdelhafez, A., Nemitallah, M.A., Araoye, A.A., Ben-Mansour, R. and Habib, M.A. A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines, Appl. Energy, 2020, 279, 115818.CrossRefGoogle Scholar
Lacarelle, A., Moeck, J., Konle, H., Vey, S., Nayeri, C. and Paschereit, C. Effect of fuel/air mixing on NOx emissions and stability in a gas premixed combustion system, In 45th AIAA Aerospace Sciences Meeting and Exhibit, p 1417, 2007.CrossRefGoogle Scholar
Rashwan, S.S., Nemitallah, M.A. and Habib, M.A. Review on premixed combustion technology: stability, emission control, applications, and numerical case study, Energy Fuels, 2016, 30, pp 998110014.CrossRefGoogle Scholar
Nemitallah, M.A., Rashwan, S.S., Mansir, I.B., Abdelhafez, A.A. and Habib, M.A. Review of novel combustion techniques for clean power production in gas turbines, Energy Fuels, 2018, 32, pp 9791004.CrossRefGoogle Scholar
Chen, M., Zhang, L., Qiu, P., Zhu, J., Zhang, W., Chen, D., Sun, S. and Zhao, Y. Experimental study of syngas combustion on a novel swirl multi-nozzle micromix combustor, Int. J. Hydrogen Energy, 2024, 60, pp 13341344.CrossRefGoogle Scholar
Quintino, F.M., Ribeiro, M. and Fernandes, E.C. Structure of CH4–air inverse diffusion flames in a multi-slit burner, Energy Fuels, 2021, 35, pp 72177231.CrossRefGoogle Scholar
Xu, T., Gao, X., Yang, J., Gan, Y., Yang, Z. and Zhang, Z. Experimental and numerical simulation study of the microscale laminar flow diffusion combustion of liquid ethanol, Ind. Eng. Chem. Res., 2013, 52, pp 80218027.CrossRefGoogle Scholar
Kalis, H., Marinaki, M., Strautins, U. and Barmina, I. Influence of electric field on thermo-chemical conversion of mixtures of straw pellets with coal, In Proc. of the 17-th Int. Conf. on Engineering for Rural Development (ERDev18), Jelgava, Latvia, pp 17461753, 2018.CrossRefGoogle Scholar
Agarwal, S., Kumar, M. and Shakher, C. Experimental investigation of the effect of magnetic field on temperature and temperature profile of diffusion flame using circular grating Talbot interferometer, Opt. Lasers Eng., 2015, 68, pp 214221.CrossRefGoogle Scholar
Zhang, T., Yu, G., Guo, Q. and Wang, F. Experimental study on the characteristics of impinging reaction region with OH* chemiluminescence in opposed impinging diffusion flames, Energy Fuels, 2013, 27, pp 70237030.CrossRefGoogle Scholar
Sen, U., Gangopadhyay, T., Bhattacharya, C., Mukhopadhyay, A. and Sen, S. Dynamic characterization of a ducted inverse diffusion flame using recurrence analysis, Combust. Sci. Technol., 2018, 190, pp 3256.CrossRefGoogle Scholar
López-Juárez, M., Sun, X., Sethi, B., Gauthier, P. and Abbott, D. Characterising hydrogen micromix flames: combustion model calibration and evaluation, In Turbo Expo: Power for Land, Sea, and Air, p V003T03A008. American Society of Mechanical Engineers, 2020.CrossRefGoogle Scholar
Hamins, A., Kashiwagi, T. and Buch, R.R. Characteristics of pool fire burning, ASTM Spec. Tech. Publ., 1996, 1284, pp 1541.Google Scholar
Degroote, E. and Garcia-Ybarra, P.L. Flame spreading over liquid ethanol, Eur. Phys. J. B, 2000, 13, pp 381386.CrossRefGoogle Scholar
Quintiere, J.G. Fundamentals of fire phenomena, 2006.CrossRefGoogle Scholar
Zanganeh, J., Moghtaderi, B. and Ishida, H. Combustion and flame spread on fuel-soaked porous solids, Prog. Energy Combust. Sci., 2013, 39, pp 320339.CrossRefGoogle Scholar
Giannouloudis, A., Sun, X., Corsar, M., Booden, S.J., Singh, G., Abbott, D., Nalianda, D. and Sethi, B. On the development of an experimental rig for hydrogen micromix combustion testing, 2021.Google Scholar
Folcarelli, L., Ferrero, A., Masseni, F. and Pastrone, D. Numerical investigation of different configurations for hydrogen fuelled jet engine combustors. In AIAA SCITECH 2024 Forum, p 0964, 2024.CrossRefGoogle Scholar
Abdelhafez, A., Hussain, M., Nemitallah, M.A., Habib, M.A. and Ali, A. Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines, Energy, 2021, 228, p 120561.CrossRefGoogle Scholar
Wang, H., Chen, X., Wang, C. and Liu, X. Numerical investigation into the pressure loss and air distribution uniformity of a hydrogen-rich Micromix combustor, Int. J. Hydrogen Energy, 2023, 48, pp 2637526393.CrossRefGoogle Scholar
Schmidt, N., Müller, M., Preuster, P., Zigan, L., Wasserscheid, P. and Will, S. Development and characterization of a low-NOx partially premixed hydrogen burner using numerical simulation and flame diagnostics, Int. J. Hydrogen Energy, 48, pp 1570915721.CrossRefGoogle Scholar
Chen, X., Wang, H., Wang, C., Wang, X., Wang, N. and Liu, X. Numerical investigation into fuel–air mixing characteristics and cold flow field of single hydrogen-rich Micromix nozzle, Fuel, 2023, 332, p 126181.CrossRefGoogle Scholar
Landry-Blais, A., Sivić, S. and Picard, M. Micro-mixing combustion for highly recuperated gas turbines: effects of inlet temperature and fuel composition on combustion stability and NOx emissions, J. Eng. Gas Turbine Power, 2022, 144, p 091014.CrossRefGoogle Scholar
Durocher, A., Fan, L., Füri, M., Bourque, G., Sirois, J., May, D., Bergthorson, J.M., Yun, S. and Vena, P. Characterization of a 5-nozzle array using premix/micromix injection for hydrogen, Appl. Energy Combust. Sci., 2024, 18, p 100260.Google Scholar
Araoye, A.A., Abdelhafez, A., Ben-Mansour, R., Nemitallah, M.A. and Habib, M.A. On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: A numerical study, Chem. Eng. Process.-Process. Intensificat., 2021, 162, p 108336.CrossRefGoogle Scholar
Tekin, N., Ashikaga, M., Horikawa, A. and Funke, H. Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems, Gas Energy, 2018, 2, pp 16.Google Scholar
Liu, Z., Xiong, Y., Zhang, Z., Ren, L., Liu, Y. and Lu, Y. Investigation of a novel combustion stabilization mechanism and combustion characteristics of a multi-nozzle array model combustor, Fuel, 2022, 327, p 125138.CrossRefGoogle Scholar
Berger, J. Scaling of an aviation hydrogen micromix injector design for industrial GT combustion applications, Aerotecn. Missili Spazio, 2021, 100, pp 239251.CrossRefGoogle Scholar
Sun, X., Agarwal, P., Carbonara, F., Abbott, D., Gauthier, P. and Sethi, B. Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics, In Turbo Expo: Power for Land, Sea, and Air, p V003T03A015. American Society of Mechanical Engineers, 2020.CrossRefGoogle Scholar
Funke, H.H.W., Beckmann, N., Keinz, J. and Abanteriba, S. Comparison of numerical combustion models for hydrogen and hydrogen-rich syngas applied for dry-low-nox-micromix-combustion, J. Eng. Gas Turbine Power, 140, p 081504, 2018.CrossRefGoogle Scholar
Trilla, J., Grossen, J., Robinson, A., Funke, H.H.-W., Bosschaerts, W. and Hendrick, P. Development of a hydrogen combustion chamber for an ultra micro gas turbine, In PowerMEMS 2008, 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, microEMS 2008, 2nd Symposium on Micro Environmental Machine Systems, Sendai, JP, Nov 9–12, 2008, pp 101104.Google Scholar
Funke, H.-W., Dickhoff, J., Keinz, J., Ayed, A.H., Parente, A. and Hendrick, P. Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications, Energy Proc., 2014, 61, pp 17361739.CrossRefGoogle Scholar
Ayed, A.H., Kusterer, K., Funke, H.-W., Keinz, J., Striegan, C. and Bohn, D. Improvement study for the dry-low-NOx hydrogen micromix combustion technology. Propul. Power Res., 2015, 4, pp 132140.CrossRefGoogle Scholar
Treleaven, N.C.W., Puggelli, S., Mercier, R., Leparoux, J., Sun, X. and Sethi, B. High altitude relight performance of hydrogen-air micromix combustion systems, In Turbo Expo: Power for Land, Sea, and Air, p V03BT04A063. American Society of Mechanical Engineers, 2023.CrossRefGoogle Scholar
Kroniger, D., Kamiya, H. and Horikawa, A. Investigation of combustion oscillation modes of hydrogen micromix flames, In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A050. American Society of Mechanical Engineers, 2023.CrossRefGoogle Scholar
Xuechao, H.U., Xiaotian, B.I., Ce, L.I.U. and Weiwei, S. Study of combustion characteristics and flame stabilization mechanism of hydrogen-containing micromix jet flames, J. Tsinghua Univ. (Sci. Technol.), 2023, 63, pp 572584.Google Scholar
Lopez-Ruiz, G., Alava, I. and Blanco, J.M. Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems, Energy, 2023, 270, p 126882.CrossRefGoogle Scholar
Funke, H.-W., Beckmann, N. and Abanteriba, S. Development and testing of a fuelflex dry-low-NOx micromix combustor for industrial gas turbine applications with variable hydrogen methane mixtures, In Turbo Expo: Power for Land, Sea, and Air, p V04AT04A002. American Society of Mechanical Engineers, 2019.CrossRefGoogle Scholar
Shahin, T.T., Gejji, R., Hodge, A.J., McLean, T.N., Lucht, R.P. and Slabaugh, C.D. Influence of natural gas addition on combustion instabilities on a lean-premixed hydrogen flame. In AIAA SCITECH 2024 Forum, p 0392, 2024.CrossRefGoogle Scholar
Tran, B., Gomez Escudero, I. and McDonell, V. Emissions and flame structure assessment of aeroengine micromixing injectors for lean direct injection of hydrogen and hydrogen/natural gas blends. In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A075. American Society of Mechanical Engineers, 2023.CrossRefGoogle Scholar
Gomez Escudero, I., Tran, B., Overbaugh, M., McDonell, V., Williams, B., Buelow, P., Ryon, J. and DeBeni, O. Adaptation of aeroengine micromixing injectors for lean direct injection of hydrogen and hydrogen/natural gas blends, In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A035. American Society of Mechanical Engineers, 2023.CrossRefGoogle Scholar
Bastiaans, R.J.M. and Devriese, C. Dilution hole design for 100% hydrogen-powered gas turbine, 2022.Google Scholar
Ayed, A.H., Kusterer, K., Funke, H.H.-W. and Keinz, J. CFD based improvement of the DLN hydrogen micromix combustion technology at increased energy densities. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS), 2016, 26, pp 290303.Google Scholar
Ayed, A.H., Kusterer, K., Funke, H.-W., Keinz, J. and Bohn, D. CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities, Propul. Power Res., 2017, 6, pp 1524.CrossRefGoogle Scholar
Boerner, S., Funke, H.-W., Hendrick, P., Recker, E. and Elsing, R. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine, Progr. Propul. Phys., 2013, 4, pp 357372.CrossRefGoogle Scholar
Horikawa, A., Okada, K., Yamaguchi, M., Aoki, S., Wirsum, M., Funke, H.H.-W. and Kusterer, K. Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine, In Turbo Expo: Power for Land, Sea, and Air, p V03BT04A014. American Society of Mechanical Engineers, 2021.CrossRefGoogle Scholar
Senouci, M., Larbi, A., Rouan, S., Bounif, A. and Merouane, H. Investigation of modified EMST micromixing model performance on Lagrangian PDF transported in lifted Hydrogen/Air fames, CFD Lett., 2024, 16, pp 2031.CrossRefGoogle Scholar
Chen, M., Zhang, L., Xing, C., Bao, Y., Qiu, P., Zhang, W., Sun, S. and Zhao, Y. Effect of mixing on combustion characteristics of swirl/non-swirl micromix flames, Non-Swirl Micromix Flames.Google Scholar
Lu, C., Zhang, L., Jiang, X., Xing, C., Liu, L. and Qiu, P. The flame structure and combustion dynamics in a steam diluted H2/Air micromix flame, Fuel, 357, p 129903, 2024.CrossRefGoogle Scholar
Lu, C., Jiang, X., Zhang, L., Xing, C., Liu, L. and Qiu, P. The turbulent flame structure in a steam diluted H2/Air micromix flame, Int. J. Hydrogen Energy, 2023, 48, pp 3849638507.CrossRefGoogle Scholar
Lu, C., Zhang, L., Xing, C., Liu, L. and Qiu, P. Effects of characteristic diameter, steam dilution, and equivalence ratio on NO formation for a H2/Air micromix design, Int. J. Hydrogen Energy, 61, 2024, pp 11331141.CrossRefGoogle Scholar
Miller, J.A. and Bowman, C.T. Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci., 1989, 15, pp 287338.CrossRefGoogle Scholar
Kirkpatrick, A.T. and Kuo, K.K. Principles of Combustion. John Wiley & Sons, 2024.Google Scholar
Ströhle, J. and Myhrvold, T. An evaluation of detailed reaction mechanisms for hydrogen combustion under gas turbine conditions, Int. J. Hydrogen Energy, 2007, 32, pp 125135.CrossRefGoogle Scholar
Konnov, A.A., Colson, G. and De Ruyck, J. NO formation rates for hydrogen combustion in stirred reactors, Fuel, 2001, 80, pp 4965.CrossRefGoogle Scholar
Zeldvich, Y.B. The oxidation of nitrogen in combustion and explosions, J. Acta Physicochimica, 1946, 21, p 577.Google Scholar
Warnatz, J., Maas, U. and Dibble, R.W. Formation of nitric oxides. In Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 2006. https://doi.org/10.1007/978-3-540-45363-5_17 CrossRefGoogle Scholar
Skottene, M. and Rian, K.E. A study of NOx formation in hydrogen flames, Int. J. Hydrogen Energy, 2007, 32, pp 35723585.CrossRefGoogle Scholar
Bozzelli, J.W. and Dean, A.M. O+ NNH: A possible new route for NOx formation in flames, Int. J. Chem. Kinet., 1995, 27, pp 10971109.CrossRefGoogle Scholar
Haworth, N.L., Mackie, J.C. and Bacskay, G.B. An ab initio quantum chemical and kinetic study of the NNH+ O reaction potential energy surface: How important is this route to NO in combustion? J. Phys. Chem. A., 2003, 107, 67926803.CrossRefGoogle Scholar
Konnov, A.A. and De Ruyck, J. Temperature-dependent rate constant for the reaction NNH+ O→ NH+ NO, Combust. Flame., 2001, 125, pp 12581264.CrossRefGoogle Scholar
Konnov, A.A. On the relative importance of different routes forming NO in hydrogen flames, Combust. Flame., 2003, 134, pp 421424.CrossRefGoogle Scholar
Saravanamuttoo, H.I.H., Cohen, H. and Rogers, G.F.C. Shaft power cycles. In Gas Turbine Theory. England: Pearson Education Limited, pp 5657, 2001.Google Scholar
Giovannoni, V., Sharma, R.N. and Raine, R.R. Thermal performances of a small-scale regenerative combustion chamber for ultra-micro gas turbine, Combust. Sci. Technol., 2017, 189, pp. 18591877.CrossRefGoogle Scholar
Price, J., Kimmel, J., Chen, X., Bhattacharya, A., Fahme, A. and Otsuka, J. Advanced materials for MercuryTM 50 gas turbine combustion system, In Turbo Expo: Power for Land, Sea, and Air, pp 261267, 2006.CrossRefGoogle Scholar
Freitag, P., Stolle, D., Kullmann, F., Linssen, J. and Stolten, D. A techno-economic analysis of future hydrogen reconversion technologies, Int. J. Hydrogen Energy, 2024, 77, pp 12541267.CrossRefGoogle Scholar
Almailea, D. Ride through Capability of medium-sized Gas Turbine Generators: Modelling and Simulation of Low Voltage Ride through Capability of Siemens Energy’s medium-sized GTG and Low Voltage Ride through Grid Codes requirements at point of connection (2023).Google Scholar
Cho, E.-S., Jeong, H., Hwang, J. and Kim, M. A novel 100% hydrogen gas turbine combustor development for industrial use, In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A020. American Society of Mechanical Engineers, 2022.CrossRefGoogle Scholar
Dennis, R., Long, H.A. and Jesionowski, G. A literature review of NOx emissions in current and future state-of-the-art gas turbines, J. Eng. Gas Turbine Power, 146, 2024.CrossRefGoogle Scholar
Langston, L.S. Hydrogen fueled gas turbines, Mech. Eng., 2019, 141, pp 5254. CrossRefGoogle Scholar
Funke, H.-W., Boerner, S., Keinz, J., Kusterer, K., Haj Ayed, A., Tekin, N., Kazari, M., Kitajima, J., Horikawa, A. and Okada, K. Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications, In Turbo Expo: Power for Land, Sea, and Air, p V01AT04A055. American Society of Mechanical Engineers, 2013.CrossRefGoogle Scholar
Haque, M.A., Nemitallah, M.A., Abdelhafez, A., Mansir, I.B. and Habib, M.A. Review of fuel/oxidizer-flexible combustion in gas turbines, Energy & Fuels, 2020, 34, pp 1045910485.CrossRefGoogle Scholar
York, W.D., Ziminsky, W.S. and Yilmaz, E. Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines, J. Eng. Gas Turbine Power, 2013, 135, 022001.CrossRefGoogle Scholar
Cecere, D., Giacomazzi, E., Di Nardo, A. and Calchetti, G. Gas turbine combustion technologies for hydrogen blends, Energies (Basel), 2023, 16, p 6829.CrossRefGoogle Scholar
Bothien, M.R., Ciani, A., Wood, J.P. and Fruechtel, G. Toward decarbonized power generation with gas turbines by using sequential combustion for burning hydrogen, J. Eng. Gas Turbine Power, 2019, 141, p 121013.CrossRefGoogle Scholar