Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-27T04:00:21.024Z Has data issue: false hasContentIssue false

A tilt-wing VTOL UAV configuration: Flight dynamics modelling and transition control simulation

Published online by Cambridge University Press:  08 May 2023

A.C. Daud Filho*
Affiliation:
Department of Aeronautical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
E.M. Belo
Affiliation:
Department of Aeronautical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
*
Corresponding author: A.C. Daud Filho; Email: acdaudf@gmail.com

Abstract

This paper aims to present a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) configuration and numerically simulate its flight transition from hover to cruise and from cruise to hover. It can tilt the canard and wing along with two attached propellers. Additionally, two fixed front propellers are pointing upwards. Multi-body equations of motion are derived for this concept of aircraft, which are used to compute the flight transition trajectory from hover to cruise configuration. Furthermore, a transition control algorithm based on gain scheduling is described, which stabilises the aircraft while it accelerates from hover to cruise, gradually tilting the wing along with its propellers, sequentially switching between equilibrium states, as the stability cost functions thresholds are reached. The transition control algorithm of the conceptual aircraft model is numerically simulated.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cetinsoy, E., Dikyar, S., Hancer, C., Oner, K.T., Sirimoglu, E., Unel, M., and Aksit, M.F. Design and construction of a novel Quad Tilt-Wing UAV. Mechatronics, 2012, 22, (6), pp 723745. doi: 10.1016/j.mechatronics.2012.03.003 CrossRefGoogle Scholar
Fredericks, W.J., McSwain, R.G., Beaton, B.F., Klassman, D.W., and Theodore, C.R. Greased lightning (gl-10) flight testing campaign. Techn. Memorandum NASA/TM-2017-219643, NASA, 2017.Google Scholar
Muraoka, K., Okada, N., Kubo, D. and Sato, M. Transition flight of Quad Tilt wing VTOL UAV. In 28th International Congress of the Aeronautical Sciences, 2012.Google Scholar
McSwain, R.G., Glaab, L.J., Theodore, C.R., Rhew, R.D. and North, D.D. Greased lightning (gl-10) performance flight research: Flight data report. Technical report, 2017.Google Scholar
Society, T.V.F. EVTOL aircraft directory, 2022. https://evtol.news/aircraft Google Scholar
Etkin, B. and Reid, L.D. Dynamics of Flight: Stability and Control, third edition.: John Wiley & Sons, Inc., 1996, pp 94143.Google Scholar
Roskam, J. Airplane Flight Dynamics and Automatic Flight Controls, Part I. Lawrence, KS: Design, Analysis and Research Corporation (DARcorporation), 2001, pp 334.Google Scholar
Stevens, B.L., Lewis, F.L. and Johnson, E.N. Aircraft Control and Simulation, third edition: Hoboken, New Jersey: John Wiley & Sons, Inc., 2016, pp 34–62.Google Scholar
Daud Filho, A.C. Flight dynamics and control study of a VTOL UAV. Master’s thesis, São Carlos School of Engineering, University of São Paulo, São Carlos, 2018, 1, pp 13–44.Google Scholar
Droandi, G., Syal, M. and Bower, G. Tiltwing multi-rotor aerodynamic modeling in hover, transition and cruise flight conditions. In AHS International 74th Annual Forum & Technology Display, Phoenix, Arizona, 2018.Google Scholar
Haixu, L., Xiangju, Q. and Weijun, W. Multi-body motion modeling and simulation for Tilt rotor aircraft. Chinese J. Aeronaut., 2010, 23, (4), pp 415422. doi: 10.1016/S1000-9361(09)60236-3 CrossRefGoogle Scholar
Su, J., Su, C., Xu, S. and Yang, X. A multibody model of tilt-rotor aircraft based on kane’s method. Int. J. Aerosp. Eng., 2019, 1–10, p. 04. doi: 10.1155/2019/9396352 Google Scholar
Liu, D., Wang, W., Zhao, B., Hu, X., and Nie, B. Preliminary virtual flight validation of a quad tilt rotor UAV in wind tunnel, In 32nd Congress of the International Council of the Aeronautical Sciences (ICAS), Pudong Shangri-La, Shanghai, 2021.Google Scholar
Sobiesiak, L.A., Fortier-Topping, H., Beaudette, D., Bolduc-Teasdale, F., de Lafontaine, J., Nagaty, A., Neveu, D. and Rancourt, D. Modelling and control of transition flight of an EVTOL tandem tilt-wing aircraft. In 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Madrid, Spain, 2019. doi: 10.13009/EUCASS2019-137 CrossRefGoogle Scholar
Liu, Z., He, Y., Yang, L., and Han, J. Control techniques of tilt rotor unmanned aerial vehicle systems: A review. Chinese J. Aeronaut., 2017, 30, (1), pp 135148. ISSN: 1000-9361. doi: 10.1016/j.cja.2016.11.001. https://www.sciencedirect.com/science/article/pii/S1000936116302199.Google Scholar
Ta, D.A., Fantoni, I. and Lozano, R. Modeling and control of a tilt tri-rotor airplane. In 2012 American Control Conference (ACC), 2012, pp 131136. doi: 10.1109/ACC.2012.6315155 CrossRefGoogle Scholar
Benkhoud, K. and Bouall‘egue, S. Modeling and LQG controller design for a Quad Tilt-Wing UAV. In 3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16), 2016, pp 198–204.Google Scholar
Lustosa, L.R., Defaÿ, F. and Moschetta, J.-M. Longitudinal study of a tilt-body vehicle: Modeling, control and stability analysis. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp 816824. doi: 10.1109/ICUAS.2015.7152366 CrossRefGoogle Scholar
Masar, I. and Stöhr, E. Gain-scheduled LQR-control for an autonomous airship. In 18th International Conference on Process Control, Tatranská Lomnica, Slovakia, 2011, pp 1417.Google Scholar
Masuda, K. and Uchiyama, K. Robust control design for quad tilt-wing UAV. Aerospace, 2018, 5, (1). ISSN: 2226-4310. doi: 10.3390/aerospace5010017; https://www.mdpi.com/2226-4310/5/1/17 CrossRefGoogle Scholar
Cardoso, D., Raffo, G. and Esteban, S. Modeling and control of a tilt-rotor UAV with improved forward flight. 2016.Google Scholar
Liu, Z., Guo, J., Li, M., Tang, S., and Wang, X. VTOL UAV transition maneuver using incremental nonlinear dynamic inversion. Int. J. Aerosp. Eng., 2018, 2018.CrossRefGoogle Scholar
Mikami, T. and Uchiyama, K. Design of flight control system for quad tilt-wing UAV. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp 801805. doi: 10.1109/ICUAS.2015.7152364.Google Scholar
Yang, X., Mejias, L. and Molloy, T. Nonlinear h-infinity control of UAVs for collision avoidance in gusty environments. J. Intell. Robot. Syst., 2013, 69, p. 08. doi: 10.1007/s10846-012-9753-y CrossRefGoogle Scholar
Öner, K.T., Çetinsoy, E., Ünel, M., Akşit, M.F., Kandemir, I. and Gülez, K. Dynamic model and control of a new quadrotor unmanned aerial vehicle with tilt-wing mechanism, World Academy of Science, Engineering and Technology, 45, 2008.Google Scholar
Zhao, W. and Underwood, C. Robust transition control of a Martian coaxial tiltrotor aerobot. Acta Astronaut., 2014, 99, pp 111129. ISSN: 0094-5765. doi: 10.1016/j.actaastro.2014.02.020; https://www.sciencedirect.com/science/article/pii/S0094576514000770.CrossRefGoogle Scholar
Daud Filho, A.C. and Belo, E.M. Flight dynamics modeling and trim curves of a conceptual semi-tandem wing VTOL UAV. In 31st International Congress of the Aeronatical Sciences (ICAS), Belo Horizonte, Brazil. 2018.Google Scholar
Meriam, J.L. and Kraige, L.G. Engineering Mechanics Dynamics, 7 edition. Hoboken, NJ: John Wiley & Sons, Inc., 2012, 5, 388, pp 513–582.Google Scholar
Propellers, A. APC Propellers performance data, 2022. http://www.apcprop.com/files/PER3_12x5.dat Google Scholar
Hoak, D.E. USAF Stability and Control Datcom. Ohio: Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, 1960.Google Scholar
Hoerner, S.F. Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance: Hoerner Fluid Dynamics, 1965.Google Scholar
Houghton, E.L. and Carpenter, P.W. Aerodynamics for Engineering Students, fifth edition: Butterworth-Heinemann, 2003.Google Scholar
Nelder, J.A. and Mead, R. A simplex method for function minimization. Comput. J., 1965, 7, pp 308313.CrossRefGoogle Scholar
Walters, F.H., Morgan, S.L., Lloyd, J., Parker, R. and Deming, S.N. Sequential Simplex Optimization: CRC Press LLC, Boca Raton, Florida, 1991.Google Scholar
Ogata, K. Modern Control Engineering, fifth edition: Prentice Hall, 2010.Google Scholar
MATLAB. R2018b. Natick, MA: The MathWorks Inc., 2010.Google Scholar
Quan, Q. Introduction to Multicopter Design and Control: Springer, Singapore, 2017.CrossRefGoogle Scholar
Franco, G.D., Martins, D.S., Góes, L.C.S., d’Oliveira, F.A., and Escosteguy, J.P. Modeling of actuators for UAV control surfaces. In 19th International Congress of Mechanical Engineering: ABCM, 2007.Google Scholar
Greulich, J. Characterization and identification of on-board servo motors using IMUs, 2016.Google Scholar