Skip to main content Accessibility help
×
Home

Article contents

A decision model for making decisions under epistemic uncertainty and its application to select materials

Published online by Cambridge University Press:  03 August 2017


Sweety Shahinur
Affiliation:
Graduate School of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
A.M.M. Sharif Ullah
Affiliation:
Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
Muhammad Noor-E-Alam
Affiliation:
Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
Hiroyuki Haniu
Affiliation:
Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
Akihiko Kubo
Affiliation:
Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
Corresponding

Abstract

This study deals with both a decision model for making decisions under epistemic uncertainty and how to use it for selecting optimal materials under the same uncertainty. In particular, the proposed decision model employs a set of possibilistic objective functions defined by fuzzy numbers to handle a set of conflicting criteria. In addition, the model can calculate the compliance of a piece of decision-relevant (imprecise) information with a given objective function. Moreover, the model is capable to aggregate the calculated compliances for the sake of ranking a given set of alternatives against the set of conflicting criteria. The problem of selecting materials for making the body of a vehicle is considered as an example. In this problem, the indices for selecting the materials are unknown because the specifications regarding the vehicle body are not given. In addition, the data relevant to material properties entails a great deal of imprecision. The presented decision model can quantify the above-mentioned epistemic uncertainty in a lucid manner and generate a list of optimal materials.


Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Achiche, S., & Ahmed-Kristensen, S. (2011). Genetic fuzzy modeling of user perception of three-dimensional shapes. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 25(1), 93107. doi:10.1017/S0890060410000466 CrossRefGoogle Scholar
Allwood, J.M., Ashby, M.F., Gutowski, T.G., & Worrell, E. (2011). Material efficiency: a white paper. Resources, Conservation and Recycling 55(3), 362381. doi:10.1016/j.resconrec.2010.11.002 CrossRefGoogle Scholar
Antonsson, E.K., & Otto, K.N. (1995). Imprecision in engineering design. Journal of Mechanical Design 117(B), 2532. doi:10.1115/1.2836465 CrossRefGoogle Scholar
Ashby, M.F. (2005). Materials Selection in Mechanical Design, 3rd ed. Oxford: Butterworth-Heinemann.Google Scholar
Booker, J.M., & Ross, T.J. (2011). An evolution of uncertainty assessment and quantification. Scientia Iranica 18(3), 669676. doi:10.1016/j.scient.2011.04.017 CrossRefGoogle Scholar
Dempster, A.P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological) 30(2), 205247.Google Scholar
Dempster, A.P. (2008). A generalization of Bayesian inference. In Classic Works of the Dempster-Shafer Theory of Belief Functions (Yager, R.R., & Liu, L., Eds.), pp. 73104. Berlin: Springer.CrossRefGoogle Scholar
Dijkman, J.G., van Haeringen, H., & de Lange, S.J. (1983). Fuzzy numbers. Journal of Mathematical Analysis and Applications 92(2), 301341. doi:10.1016/0022-247X(83)90253-6 CrossRefGoogle Scholar
Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing 10(4), 273297. doi:10.1023/B:REOM.0000032115.22510.b5 CrossRefGoogle Scholar
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science 9(6), 613626. doi:10.1080/00207727808941724 CrossRefGoogle Scholar
Dubois, D., & Prade, H. (1988). Possibility Theory. New York: Plenum Press.CrossRefGoogle Scholar
Gurnani, A.P., & Lewis, K. (2005). Robust multiattribute decision making under risk and uncertainty in engineering design. Engineering Optimization 37(8), 813830. doi:10.1080/03052150500340520 CrossRefGoogle Scholar
Huang, G.Q., & Jiang, Z. (2002). FuzzySTAR: fuzzy set theory of axiomatic design review. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 16(4), 291302. doi:10.1017/S0890060402164031 CrossRefGoogle Scholar
Jiang, Z., Li, W., Apley, D.W., & Chen, W. (2015). A spatial-random-process based multidisciplinary system uncertainty propagation approach with model uncertainty. Journal of Mechanical Design 137(10), 101402101402. doi:10.1115/1.4031096 CrossRefGoogle Scholar
Joslyn, C.A., & Booker, J.M. (2004). Generalized information theory for engineering modeling and simulation. In Engineering Design Reliability Handbook (Nikolaidis, E., Ghiocel, D.M., & Singhal, S., Eds.). Boca Raton, FL: CRC Press.Google Scholar
Khozaimy, O., Al-Dhaheri, A., & Ullah, A.M.M.S. (2011). A decision-making approach using point-cloud-based granular information. Applied Soft Computing 11(2), 25762586. doi:10.1016/j.asoc.2010.10.007 CrossRefGoogle Scholar
Klir, G.J. (1990). A principle of uncertainty and information invariance. International Journal of General Systems 17(2–3), 249275. doi:10.1080/03081079008935110 CrossRefGoogle Scholar
Klir, G.J. (1999). On fuzzy-set interpretation of possibility theory. Fuzzy Sets and Systems 108(3), 263273. doi:10.1016/S0165-0114(97)00371-0 CrossRefGoogle Scholar
Matsumura, T., & Haftka, R.T. (2013). Reliability based design optimization modeling future redesign with different epistemic uncertainty treatments. Journal of Mechanical Design 135(9), 091006091006. doi:10.1115/1.4024726 CrossRefGoogle Scholar
Mayyas, A.T., Mayyas, A., Qattawi, A., & Omar, M.A. (2012). Sustainable lightweight vehicle design: a case study of eco-material selection for body-in-white. International Journal of Sustainable Manufacturing 2(4), 317337. doi:10.1504/IJSM.2012.048586 CrossRefGoogle Scholar
Mayyas, A.T., Qattawi, A., Omar, M., & Shan, D. (2012). Design for sustainability in automotive industry: a comprehensive review. Renewable and Sustainable Energy Reviews 16(4), 18451862. doi:10.1016/j.rser.2012.01.012 CrossRefGoogle Scholar
McDowell, D.L., Panchal, J.H., Choi, H.-J., Seepersad, C.C., Allen, J.K., & Mistree, F. (2010). Managing Design Complexity Integrated Design of Multiscale, Multifunctional Materials and Products. Boston: Butterworth-Heinemann.Google Scholar
Nikolaidis, E., Chen, S., Cudney, H., Haftka, R.T., & Rosca, R. (2003). Comparison of probability and possibility for design against catastrophic failure under uncertainty. Journal of Mechanical Design 126(3), 386394. doi:10.1115/1.1701878 CrossRefGoogle Scholar
Nikolaidis, E., Ghiocel, D.M., & Singhal, S. (Eds.) (2004). Engineering Design Reliability Handbook. Boca Raton, FL: CRC Press.Google Scholar
Noor-E-Alam, M., Lipi, T.F., Hasin, M.A.A., & Sharif Ullah, A.M.M. (2011). Algorithms for fuzzy multi expert multi criteria decision making (ME-MCDM). Knowledge-Based Systems 24(3), 367377. doi:10.1016/j.knosys.2010.10.006 CrossRefGoogle Scholar
Omar, M.A. (2011). The Automotive Body Manufacturing Systems and Processes. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Poulikidou, S., Schneider, C., Björklund, A., Kazemahvazi, S., Wennhage, P., & Zenkert, D. (2015). A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Materials & Design, 83, 704712. doi:10.1016/j.matdes.2015.06.079 CrossRefGoogle Scholar
Rashid, M.M., Sharif Ullah, A.M.M., Tamaki, J., & Kubo, A. (2011). Evaluation of hard materials using eco-attributes. Advanced Materials Research 325, 693698.CrossRefGoogle Scholar
Rezaee, R., Brown, J., Augenbroe, G., & Kim, J. (2015). Assessment of uncertainty and confidence in building design exploration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 29(4), 429441. doi:10.1017/S0890060415000426 CrossRefGoogle Scholar
Ross, T.J., Booker, J.M., & Montoya, A.C. (2013). New developments in uncertainty assessment and uncertainty management. Expert Systems With Applications 40(3), 964974. doi:10.1016/j.eswa.2012.05.054 CrossRefGoogle Scholar
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press.Google Scholar
Shamasuzzaman, M., Sharif Ullah, A.M.M., & Dweiri, F.T. (2013). A fuzzy decision model for the selection of coals for industrial use. International Journal of Industrial and Systems Engineering 14(2), 230244.CrossRefGoogle Scholar
Sharif Ullah, A.M.M., Fuji, A., Kubo, A., & Tamaki, J. (2014). Analyzing the sustainability of bimetallic components. International Journal of Automation Technology 8(5), 745753.CrossRefGoogle Scholar
Sharif Ullah, A.M.M., Rashid, M.M., & Tamaki, J. (2012). On some unique features of C-K theory of design. CIRP Journal of Manufacturing Science and Technology 5(1), 5566. doi:10.1016/j.cirpj.2011.09.001 CrossRefGoogle Scholar
Sharif Ullah, A.M.M., Sato, M., Watanabe, M., & Rashid, M.M. (2016). Integrating CAD, TRIZ, and customer needs. International Journal of Automation Technology 10(2), 132143.CrossRefGoogle Scholar
Sharif Ullah, A.M.M., & Shamsuzzaman, M. (2013). Fuzzy Monte Carlo simulation using point-cloud-based probability-possibility transformation. Simulation 89(7), 860875. doi:10.1177/0037549713482174 CrossRefGoogle Scholar
Sharif Ullah, A.M.M., & Tamaki, J. (2011). Analysis of Kano-model-based customer needs for product development. Systems Engineering 14(2), 154172. doi:10.1002/sys.20168 CrossRefGoogle Scholar
Ullah, A.M.M.S. (2005a). A fuzzy decision model for conceptual design. Systems Engineering 8(4), 296308. doi:10.1002/sys.20038 CrossRefGoogle Scholar
Ullah, A.M.M.S. (2005b). Handling design perceptions: an axiomatic design perspective. Research in Engineering Design 16(3), 109117. doi:10.1007/s00163-005-0002-2 CrossRefGoogle Scholar
Ullah, A.M.M.S. (2008). Logical interaction between domain knowledge and human cognition in design. International Journal of Manufacturing Technology and Management 14(1–2), 215227. doi:10.1504/IJMTM.2008.017496 CrossRefGoogle Scholar
Ullah, A.M.M.S., & Harib, K.H. (2008). An intelligent method for selecting optimal materials and its application. Advanced Engineering Informatics 22(4), 473483. doi:10.1016/j.aei.2008.05.006 CrossRefGoogle Scholar
Ullah, A.M.M.S., Hashimoto, H., Kubo, A., & Tamaki, J. (2013). Sustainability analysis of rapid prototyping: material/resource and process perspectives. International Journal of Sustainable Manufacturing 3(1), 2036. doi:10.1504/IJSM.2013.058640 CrossRefGoogle Scholar
Walley, P. (1991). Statistical Reasoning With Imprecise Probabilities. London: Chapman Hall.CrossRefGoogle Scholar
Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning 24(2–3), 125148. doi:10.1016/S0888-613X(00)00031-1 CrossRefGoogle Scholar
Youn, B.D., & Choi, K.K. (2004). Selecting probabilistic approaches for reliability-based design optimization. AIAA Journal 42(1), 124131. doi:10.2514/1.9036 CrossRefGoogle Scholar
Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences Part I (8), 199249; Part II (8), 301–357; Part III (9), 43–80.CrossRefGoogle Scholar
Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1(1), 328. doi:10.1016/0165-0114(78)90029-5 CrossRefGoogle Scholar
Zadeh, L.A. (2005). Toward a generalized theory of uncertainty (GTU)––an outline. Information Sciences 172(1–2), 140. doi:10.1016/j.ins.2005.01.017 CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 17
Total number of PDF views: 87 *
View data table for this chart

* Views captured on Cambridge Core between 03rd August 2017 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-8q5vc Total loading time: 0.439 Render date: 2020-12-01T22:50:32.259Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 22:06:15 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A decision model for making decisions under epistemic uncertainty and its application to select materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A decision model for making decisions under epistemic uncertainty and its application to select materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A decision model for making decisions under epistemic uncertainty and its application to select materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *