Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-662rr Total loading time: 0.337 Render date: 2022-05-21T10:01:46.890Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics

Published online by Cambridge University Press:  11 January 2002

SATNAM ALAG
Affiliation:
Gazoo Corporation
ALICE M. AGOGINO
Affiliation:
Department of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720, USA
MAHESH MORJARIA
Affiliation:
GE Energy Services, 4200 Wildwood Parkway, Atlanta, GA 30339, USA

Abstract

In equipment monitoring and diagnostics, it is very important to distinguish between a sensor failure and a system failure. In this paper, we develop a comprehensive methodology based on a hybrid system of AI and statistical techniques. The methodology is designed for monitoring complex equipment systems, which validates the sensor data, associates a degree of validity with each measurement, isolates faulty sensors, estimates the actual values despite faulty measurements, and detects incipient sensor failures. The methodology consists of four steps: redundancy creation, state prediction, sensor measurement validation and fusion, and fault detection through residue change detection. Through these four steps we use the information that can be obtained by looking at: information from a sensor individually, information from the sensor as part of a group of sensors, and the immediate history of the process that is being monitored. The advantage of this methodology is that it can detect multiple sensor failures, both abrupt as well as incipient. It can also detect subtle sensor failures such as drift in calibration and degradation of the sensor. The four-step methodology is applied to data from a gas turbine power plant.

Type
Research Article
Information
AI EDAM , Volume 15 , Issue 4 , September 2001 , pp. 307 - 320
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
38
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *